
A

SHIELD 
PLATFORM 

ENCRYPTlON  
ARCHlTECTURE

How to protect sensitive data without 

locking up critical business functionality.



3

Contents

© Copyright 2000–2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of 
salesforce.com, inc., as are other names and marks. Other marks appearing herein may be trademarks  
of their respective owners.

03   The need for encryption

 
  
  

08   What it does 

10   How it works

  
  
  
  
  
 

15   Key management

 

17   Key derivation architecture

  
  
  
  
  
 

28   Glossary

Shield Platform Encryption and the Force.com platform architecture 
Encryption in Force.com platform’s application layer 
Cryptographic library and algorithms 
Data encryption keys 
Storing encrypted payloads 
Shield Platform Encryption process flow

Key rotation and data re-encryption

Balancing data security with business needs 
Principles and design 
Before you encrypt

HSM initialization 
Per-release secret generation 
Key derivation server startup 
On-demand tenant secret generation 
Key derivation 
PBKDF2 inputs



4

SHIELD PLATFORM

http://www.verizonenterprise.com/DBIR/2014/reports/rp_Verizon-DBIR-2014_en_xg.pdf

http://www.breachlevelindex.com/pdf/Breach-Level-Index-Report-Q22014.pdf

http://www.breachlevelindex.com/#!home

http://www.reuters.com/article/2014/03/31/us-usa-security-nsa-rsa-idUSBREA2U0TY20140331 

1

2

3

4

The need for encryption

There were over 63,000 security incidents and nearly 1,400 confirmed data 
breaches worldwide in 20131. A study of 237 data breaches from the second 
quarter of 2014 showed that encryption was used to secure breached data in 

only 4% of cases. Strong encryption and key management, the most effective tools 
for rendering exfiltrated data useless to attackers, were used in less than 1% of cases2. 
According to some estimates, over 3 billion records have been compromised  
since 2013.3 
 
New security vulnerabilities, like Heartbleed, Shellshock, and POODLE, are reported 
on a regular basis. While Transport Layer Security (TLS) is one effective tool against 
data loss, researchers in the security community have demonstrated numerous 
techniques to compromise TLS and other encryption solutions. News reports in 2013 
and 2014 confirmed that RSA accepted $10 million from the NSA to build backdoors 
into cryptographic libraries that are used to secure substantial chunks of Internet and 
corporate IT infrastructure.4 Across the industry, there is an increasing awareness that 
transport security isn’t enough to protect sensitive data. Additionally, attackers are 
targeting a wider array of targets. In the past, attacks focused on high value, financial 
targets — retail and point of sale, credit card processors, card issuers, and banks.  
Now, attackers are stealing any personally identifiable information (PII), which can 
enable further social engineering attacks and more significant compromises. 
 
That’s why security and trust are major factors in every company’s evaluation of public 
cloud services. Customers in particular are choosing which business functions to run on 
the Salesforce platform, what applications they can build to extend those functions, 
and what data they need to store there to enable those functions. Customers 
increasingly use the Salesforce platform to build applications that require PII and 
other sensitive, confidential, or proprietary data. With this sensitive data stored on 
the Salesforce platform, customers want additional layers of protection on top of our 
standard security measures. Extra features such as authentication and single sign-on, 
granular access controls, and advanced activity monitoring give customers control 
over when and how they protect their data. 



5

Balancing data security with 
business needs 

Choosing to store PII, sensitive, confidential, or proprietary data with any third 
party often prompts customers to more closely investigate both external 
regulatory and internal data compliance policies. Internal policies frequently 

rely on interpretation of external regulations. As customers look at regulations such 
as PCIDSS, HIPAA/HITECH, and FedRAMP through the lens of cloud-based service 
adoption, they typically take a pragmatic but conservative approach to data protection 
in the cloud. 

This pragmatic approach includes three requirements shared by a wide variety of 
customers in regulated industries such as financial services, healthcare, and life 
sciences, as well as manufacturing, technology, and government.

1.	 Encrypt sensitive data when it’s stored at rest in the Salesforce cloud.

2.	 Support customer-controlled encryption key lifecycles.

3.	 Preserve application and Platform functionality.

However, if data is encrypted at rest — depending on where encryption and decryption 
occurs and where the encryption keys are stored — preserving Salesforce functionality 
becomes difficult, if not impossible. There’s a tradeoff between strong security  
and functionality. What the business wants often differs from what security and  
compliance require.

The need for encryption



6

SHIELD PLATFORM

Principles and design goals

To balance security demands with customers’ functional requirements,  
Salesforce defined a set of principles that drove our decisions around solution 
design and architecture. We focused on the problems we wanted to solve, clearly 

defined the boundaries of our solution, and identified the implications and tradeoffs 
of the design.

Encrypt data at rest.  
The Salesforce Shield Platform Encryption solution encrypts data at rest when 
stored on our servers, in the database, and the file system. We don’t address data 
residency or remote key management, which require off-Salesforce solutions and 
typically involve on-premises software and complex integrations. To encrypt data at 
rest and preserve functionality, we built the encryption services natively  
into the Salesforce platform.

1.	Natively integrate encryption at rest with key Salesforce features. 
One of the things that makes the Salesforce platform so remarkable is that it is 
driven by metadata. Shield Platform Encryption uses that metadata to tell the other 
platform features which data is encrypted. This way we can prevent those features 
from inadvertently exposing plaintext or ciphertext. And we can ensure that critical 
business functionality — like partial search — continues to work even when data is 
encrypted. 

2.	Use strong encryption.  
The Shield Platform Encryption solution uses strong, probabilistic encryption on 
data stored at rest. Shield Platform Encryption uses the Advanced Encryption 
Standard (AES) with 256-bit keys using CBC mode, PKCS5 padding, and random 
initialization vector (IV). We opted for probabilistic encryption over deterministic 
encryption. This type of encryption results in a loss of some functionality, such as 
sorting operations, but we consider this a reasonable tradeoff in favor of security. 
However, we recognize that in some cases, business requirements depend on 
preserving more functionality, which might influence what data customers decide 
to encrypt.	          	

The need for encryption



7http://en.wikipedia.org/wiki/Hardware_security_module5

Enable customers to drive the key lifecycle.  
We built a key management framework that scales to our massively multi-tenant 
model and gives you complete control over the key management lifecycle. Since 
the encryption service is built natively into the Salesforce platform, the encryption 
keys must reside in the Salesforce environment. Adhering to the principle that 
customers should have complete control over the key lifecycle, we built key 
management functionality into the Setup UI and API such that customers decide 
when to generate, supply, rotate, import, export, and destroy keys. Customers also 
determine who is responsible for performing these tasks. With the new Bring Your 
Own Keys (BYOK), you can generate and store tenant secrets outside of Salesforce 
using your own crypto libraries, enterprise key management systems, or hardware 
security modules. As with all administration tasks, everything is audited.

5.	 Protect keys from unauthorized access.  
A primary consideration when architecting our key management infrastructure 
was making encryption keys available to the encryption service while preventing 
privileged Salesforce employees, such as DBAs, from inappropriately accessing 
them. This consideration led us to incorporate hardware security modules  
(HSMs)5 into the infrastructure. Shield Platform Encryption uses HSMs to generate 
cryptographic secrets used to derive organization-specific data encryption keys. 
The result is a shared key management service that creates tenant-specific derived 
keys. The keys aren’t persisted; they are therefore inaccessible to Salesforce 
employees and, by extension, malicious external attackers.

6.	 Encrypt as little data as possible.  
Our design gives customers control over what data they encrypt. Your organization 
administrator chooses whether to turn on encryption for standard fields, custom 
fields, files, and attachments. You also choose which specific fields to encrypt at 
rest. The driving principle is to encrypt as little as possible to preserve functionality 
while keeping private, sensitive, confidential, and regulated data safe.



8

SHIELD PLATFORM

Before you encrypt

Before you decide to encrypt data in Salesforce — or in any cloud service — first 
make sure you’re matching the right security solution to the type of threats  
you face. If, for example, you are most concerned about protecting against 

end-user or administrative account takeover attacks, which are usually achieved 
through social engineering and malware infection, data encryption may not be an 
appropriate control against such a threat. Consider instead malware detection and 
activity monitoring as ways to identify when users may have been compromised and  
a malicious outsider is attempting to gain access to data. 
 
Salesforce Shield Platform Encryption protects data at rest. It shouldn’t be confused 
with a control that encrypts data in transit, such as Transport Layer Security6 (which 
Salesforce enables by default for your org). Shield Platform Encryption is best suited for: 

•	 Protecting against data loss due to unauthorized database access

•	 Bolstering compliance with regulatory requirements or internal security policies

•	 Satisfying contractual obligations to handle sensitive and private data on behalf  
of customers

 
The best approach is adopting a defense-in-depth strategy that takes advantage of 
all the security features Salesforce offers. The Security Implementation Guide7 gives a 
comprehensive overview of the customer-controlled security capabilities available. 
 
After completing a threat modeling exercise, use the outcome to inform a granular 
data classification. Identify data elements that are sensitive, private, or confidential. 
Your resulting strategy should be to encrypt only the most sensitive of those data 
elements. This will help to balance stronger data protection controls against the need 
to build and preserve critical business functionality on the Salesforce Platform or 
when using Sales Cloud or Service Cloud.

The need for encryption

https://en.wikipedia.org/wiki/Transport_Layer_Security

https://resources.docs.salesforce.com/202/latest/en-us/sfdc/pdf/salesforce_platform_encryption_implementation_guide.pdf

6

7

https://resources.docs.salesforce.com/202/latest/en-us/sfdc/pdf/salesforce_platform_encryption_implementation_guide.pdf


9

What it does

Shield Platform Encryption allows you to encrypt fields, files, and attachments 
stored in the Salesforce platform. In contrast to Classic Encryption, which uses 
a custom field type in the Salesforce data model, Shield Platform Encryption 

allows you to encrypt standard fields, custom fields, and files. You can even manage 
the lifecycle of your data encryption keys. Shield Platform Encryption uses metadata 
to keep information in these files and fields secure while preserving the ability to 
perform common business tasks. 

Files and Attachments Standard Fields Custom Fields

• Files attached to feeds

• Files attached to 
records

• Files in the Content, 
Libraries, and Files apps

• Files managed with Salesforce 
Files Sync

• Notes (new Notes tool only)

• Email attachments

• Files attached to Chatter posts, 
comments, and the sidebar

• Files attached to 
Knowledge articles

On the Account object:
• Account Name
• Description
• Fax
• Phone
• Website

On the Contact object:
• Description
• Email
• Fax
• Home Phone
• Mailing Addresses
• Mobile
• Name (First Name, 

Middle Name, 
Last Name)

• Other Phone
• Phone

On the Case Object:
• Description
• Subject

On Case Comments:
• Body (including 

Internal Comments)

• Date
• Date/Time
• Email
• Phone
• Text
• Text area
• Text area (long)
• URL

Which data elements can Salesforce administrators encrypt?



10

SHIELD PLATFORM

Pricing

Encryption at Rest

Native Solution (No Hardware or Software is Required)

Encryption Algorithm

HSM-based Key Derivation 

“Manage Encryption Keys” Permission 

Generate, Export, Import, and Destroy Keys

PCI-DSS L1 Compliance 

Masking

Mask Types and Characters

“View Encrypted Data” Permission is Required to Read 
Encrypted Field Values

Email Template Values Respect “View Encrypted Data”
Permission 

Encrypted Standard Fields 

Encrypted Attachments, Files, and Content

Encrypted Custom Fields

Encrypt Existing Fields for Supported Custom Field Types

Search (UI, Partial Search, Lookups, Certain SOSL Queries)

Search Encryption at Rest

API Access

Available in Workfl ow Rules and Workfl ow Field Updates

Available in Approval Process Entry Criteria and Approval 
Step Criteria

Feature Classic Encryption

128-bit Advanced 
Encryption Standard (AES)

Dedicated custom fi eld type,
Limited to 175 characters

256-bit Advanced 
Encryption Standard (AES)

Shield 
Platform Encryption

Included in base user license Additional fee applies

This table compares the features of Shield Platform Encryption and Classic Encryption. 



11

How it works

To meet the security requirements of customers while preserving functionality 
and performance in our multi-tenant environment, we built the encryption 
service directly into the Force.com platform. The platform’s object-

relational mapping model includes metadata that describes exactly which data is 
encrypted. Encrypted data is stored with additional information that uses strong, 
nondeterministic cryptography supported by the Java Cryptographic Extension. 
Encryption and decryption occur in the platform’s application layer, as application 
components are materialized by the runtime engine, ensuring that encrypted data 
isn’t persisted in plaintext. Encryption keys are derived on demand from key material 
generated by HSMs and never persisted. Finally, the architecture supports the 
simultaneous use of multiple encryption keys, enabling customers to quickly rotate 
and archive keys without losing access to their data.
 
Encryption in Force.com platform’s application layer

Force.com’s foundation is a metadata-driven software architecture that enables multi-
tenant applications. Application components, such as Salesforce objects, aren’t modeled 
directly in our underlying relational database. Instead, when customers interact with their 
data in a Salesforce application, the platform’s runtime engine materializes the data using 
metadata stored separately in Force.com’s Universal Data Dictionary (UDD). This way, 
each tenant’s data is kept secure in the shared database, tenants can customize schema 
in real time without affecting other tenants’ data, and the application’s code base  
can be patched or upgraded without breaking tenant-specific customizations. See  
The Force.com Multitenant Architecture8 for details.

https://developer.salesforce.com/page/Multi_Tenant_Architecture8

https://developer.salesforce.com/page/Multi_Tenant_Architecture


12

SHIELD PLATFORM

The UDD includes metadata that determines which data is encrypted at runtime. 
The encryption service works in the Force.com platform’s application layer. That is, 
data is encrypted directly before it’s stored in the database. The resulting encrypted 
payload is stored with metadata about the specific key used to encrypt it. In the case 
of decryption, data is decrypted as it’s materialized. It is then pushed up through the 
application pipeline and appears in plaintext to the user who requested it. In the case 
of field data, if the user who requested the data does not have the “View Encrypted 
Data” permission, the data is never decrypted and appears masked to the user.

Figure 1: Encrypted field values are only decrypted when requested by users with the “View Encrypted 
Data” permission (left). Encrypted data appears masked to users without the permission (right).

By embedding the encryption metadata in the UDD, the Shield Platform Encryption 
architecture allows customers to choose what data to encrypt. Performing the 
encryption work in the Shield Platform Encryption’s application layer enables the 
engine to strictly manage the flow of encrypted data from the application to the 
database and vice versa, since the relevant code paths run through the UDD before 
data is read or stored. 

Cryptographic library and algorithms

Shield Platform Encryption uses the Java Cryptography Extension (JCE), to encrypt 
and decrypt data. Specifically, Shield Platform Encryption uses the Advanced 
Encryption Standard (AES-256) in CBC mode with randomized IV  
and PKCS5 for padding. The JCE class SecureRandom is used to generate the IV.



13

Key Derivation Server

EmbeddedHSM

Key Derivation
Function

Tenant
Secret 1

Master Secret

Summer ‘15

Master Salt

Summer ‘15

Encryption
ServiceCache

Data encryption keys

The AES-256 keys used to encrypt customer data aren’t persisted. Instead, they’re 
derived on demand from secrets generated by logically and physically separated 
HSMs. The master secret is generated at the start of each Salesforce release and 
stored securely in Salesforce’s internal file system. The customer-specific tenant secret 
is supplied by customers or generated by customers on demand, and then stored 
securely in the database. These secrets, along with a master salt generated at the 
start of each release, are used as inputs to Password-Based Key Derivation Function 2 
(PBKDF2) to derive data encryption keys. PBKDF2 is run on a key derivation server in a 
Salesforce data center. Once derived, data encryption keys are sent (encrypted) back 
to the encryption service running on the Salesforce platform and stored in the cache 
of a platform application server until the cache is flushed.

The organization’s specific search index key is different than the data encryption key. 
See the “Search Encryption at Rest process flow” section for more information.

Figure 2: Deriving data encryption keys.



14

SHIELD PLATFORM

Storing encrypted payloads 

Encrypted data is stored in the database with its metadata, including:

•	 A bit that indicates the field contains ciphertext

•	 The ID of the customer’s tenant secret used to derive the matching encryption key
•	 A randomized, 128-bit initialization vector (IV) for cryptographic use

The tenant secret ID is used to locate the tenant secret value and creation date. These 
values are stored in a Salesforce object called TenantSecret. When a user accesses or 
saves encrypted data, the encryption service sends a request to a key derivation server, 
which uses the tenant secret and corresponding master secret, identified by the tenant 
secret creation date, to derive a data encryption key. The random IV is used with the 
encryption key to nondeterministically encrypt the data. 



15

Key Derivation Server

Key Derivation
Function

Cache

Encryption
Service

Figure 3: Process flow for encrypting data. 

Shield Platform Encryption process flow

Before data is encrypted, a Salesforce administrator must enable encryption and generate 
a tenant secret. For each field, file, and attachment on which encryption is enabled, the 
corresponding metadata in the UDD is updated to reflect the new encryption setting. 
Users must have the “View Encrypted Data” permission to view encrypted field data.

1.	 When a Salesforce user saves encrypted data, the runtime engine determines 
	 from metadata whether the field, file, or attachment should be encrypted before 	 
	 storing it in the database.

2.	 If so, the encryption service checks for the matching data encryption key in  
	 cached memory.

3.	 The encryption service determines if the key exists.

a.	 If so, the encryption service retrieves the key.

b.	Otherwise, the service sends a derivation request to a key derivation server and 
returns it to the encryption service running on the Salesforce platform.

4.	 After retrieving or deriving the key, the encryption service generates a 
	 random initialization vector (IV) and encrypts the data using JCE’s AES-256 
	 implementation. 

5.	 The ciphertext is saved in the database or file storage. The IV and corresponding 
	 ID of the tenant secret used to derive the data encryption key are saved in 
	 the database.



16

SHIELD PLATFORM

Key Derivation Server

Key Derivation
Function

Cache

Encryption
Service

Figure 4: Search encryption at rest

Search Encryption at Rest process flow
The Salesforce search engine is built on the open-source enterprise search platform 
software Apache Solr. The search index, which stores tokens of record data with links back 
to the original records stored in the database, is housed within Solr. Partitions divide the 
search index into segments to allow Salesforce to scale operations. Apache Lucene is used 
for its core library.

Using Shield Platform Encryption’s HSM-based key derivation architecture, metadata, and 
configurations, Search Encryption at Rest runs automatically when Platform Encryption is 
in use. The solution applies strong encryption on an org-specific search index .fdt, .tim and 
.tip file types using an org-specific AES-256 bit encryption key. The search index is encrypted 
at the search index segment level, and all search index operations require index blocks to 
be encrypted in memory.

There aren’t any changes in Setup or changes to the user interface, so the added protec-
tion is seamless and determined by the organization’s encryption policy.

The only way to access the search index or the key cache is through programmatic APIs.



17

Before the search index files are encrypted, a Salesforce security administrator must 
enable Search Encryption at Rest. The administrator then sets up their encryption policy 
to determine which data elements need to be embedded with encryption. The admin 
configures Platform Encryption by selecting fields and files to encrypt. An org-specific 
HSM-derived key specifically for search index encryption is derived from the tenant secret 
on demand. The key material is passed to the search engine’s cache on a secure channel.

The process when a user creates or edits records:

1.	 The core application determines if the search index segment should be encrypted 
	 or not based on metadata.

2.	 The core application determines if the search index segment should be encrypted 	
	 or not based on metadata.

3.	 The encryption service determines if the key exists in the cache.

a.	 If the key exists in the cache, the encryption service uses the key for encryption.

b.	Otherwise, the service sends a request to the core application, which in turn 
sends an authenticated derivation request to a key derivation server and returns 
the key to the core application server.

4.	 After retrieving the key, the encryption service generates a random initialization 		
	 vector (IV) and encrypts the data using JCE’s AES-256 implementation.

5.	 The key ID (identifier of the key being used to encrypt the index segment) and  
	 IV are saved in the search index. 

The process is similar when a user searches for encrypted data:

1.	 When a user searches for a term, the term is passed to the search index, along 		
	 with which Salesforce objects to search.

2.	 When the search index executes the search, the encryption service opens the 		
	 relevant segment of the search index in memory and reads the key ID and IV.

3.	 Repeats steps 3 through 5 in the search index encryption process above.

4.	 The search index processes the search and returns the results to the user seamlessly. 

If Salesforce administrators disable encryption on a field, all index segments that were  
encrypted are unencrypted and key ID is set to null. This process can take up to seven days.



18

SHIELD PLATFORM

Key management

Shield Platform Encryption allows Salesforce administrators to manage 
the lifecycles of their data encryption keys while protecting the keys from 
unauthorized access. To ensure this level of protection, data encryption keys 

are never persisted on disk. Instead, they’re derived on demand from the master and 
tenant secrets. 
 
The master secret is generated by a master HSM at the start of each release.  
The master HSM is “air-gapped” from Salesforce’s production network and stored 
securely in a bank safety deposit box. Only designated Salesforce security officers can 
access the safety deposit box and the master HSM stored within. 
 
Tenant secrets are either generated on demand using HSMs embedded in key 
derivation servers deployed in clusters to each of Salesforce’s data centers, or supplied 
by the customer using the Bring Your Own Key (BYOK) service.  
 
The Bring Your Own Key service is new as of Winter ‘17, and extends our existing key 
management architecture via an API service. This gives customers more control and 
flexibility to use a variety of options for managing tenant secrets. Customers can use 
open source crypto libraries, their existing HSM infrastructure, or even third-party 
key brokering services to create and manage tenant secrets outside Salesforce. They 
can then give Salesforce’s key management service access to those tenant secrets. 
Customers can revoke this access at any time. 						    
									              
Each key derivation server has access to the release-specific secrets for every 
Salesforce release. When a data encryption key is needed to encrypt or decrypt 
customer data, the server derives the key from the master and tenant secrets. 		
									            
By controlling the lifecycle of your organization’s tenant secrets, you control the 
lifecycle of the derived data encryption keys. Your Salesforce administrator specifies 
a user to manage the tenant secrets for your organization and assigns that user the 
“Manage Encryption Keys” user permission. This user permission allows the key 
administrator to generate, archive, export, import, and destroy tenant secrets.

How it works



19

As Figure 5 illustrates, it is possible to have more than one tenant secret in a Salesforce 
organization. Only the most recent tenant secret is active, meaning only that tenant 
secret is used to derive the data encryption key used to encrypt data. When you 
generate a new tenant secret, the active secret becomes archived. Archived tenant 
secrets are used to decrypt data that was last encrypted when the archived tenant 
secret was active. 

You can destroy an archived tenant secret. If you do, it is no longer possible to derive 
the encryption key required to decrypt the data that was encrypted using that key. 
Take special care to backup and protect both archived tenant secrets and encrypted data.

Key rotation and data re-encryption

When you rotate tenant secrets by generating or supplying a new one, the resulting 
derived data encryption keys rotate as well. New data is encrypted and decrypted 
using the data encryption key derived from the new, active tenant secret. Existing 
data stays encrypted with the former key. Salesforce can run a background process 
to traverse the database and file storage, decrypt existing encrypted data, and then 
re-encrypt the data using the new data encryption key. This process is transparent to 
users and administrators and must be initiated by a Salesforce support engineer.

Figure 5: Shield Platform Encryption page with Key Management features



20

SHIELD PLATFORM

Key derivation architecture

Shield Platform Encryption utilizes key derivation servers to derive data 
encryption keys for encrypting customer data at rest. The keys are derived from 
fragmented secrets that are securely wrapped and stored in Salesforce’s internal 

file system, ensuring that the keys are never persisted in their composite forms and 
enabling customers to control the key lifecycle. These secrets and secret-wrapping 
keys are initialized by a master HSM at the start of each release, or in the case of 
customer-driven tenant secrets, on demand in production environments by HSMs 
embedded in the key derivation servers. 
 
The key derivation architecture includes the following processes:

•	 HSM initialization. Before they’re put to use, both the master and embedded HSMs 
are initialized, which includes the creation of their respective encryption key pairs.

•	 Per-release secret generation. At the start of each release, the master HSM is 
plugged into an offline laptop and used to generate the per-release secrets. The 
secrets are hashed and stored in Salesforce’s internal file system for consumption 
by the embedded HSMs.

•	 Key derivation server startup. When a key derivation server starts up, it accesses 
each release’s encrypted secrets in the internal file system. Then it decrypts the 
secrets and stores them in its cache in preparation for key derivation.

•	 Two options for providing tenant secrets:

•	On-demand tenant secret generation. One of the inputs into the key derivation 
function that creates your organization’s data encryption key is an organization-
specific, customer-managed tenant secret. Customers control the lifecycle of 
their data encryption keys by generating new tenant secrets. When a customer 
generates a new tenant secret, the request is sent to the key derivation server 
from the application server and authenticated. Then, an embedded HSM 
generates a tenant secret, which is encrypted by the key derivation server and 
sent back to the application server to be stored in the database. 

•	Customer-supplied tenant secret upload. The Salesforce Shield Bring Your Own     
Key (BYOK) service allows customers to create tenant secrets outside of Salesforce 
using the customer’s crypto libraries, enterprise key management system, or 
hardware security module. They then grant Shield Platform Encryption’s key 
management machinery access to these keys. Customers can encrypt their tenant 
secrets with a self-signed or certificate authority (CA) certificate’s public key.  
They can revoke Salesforce’s access to these tenant secrets on demand via the 
Key Management tooling in Setup or programmatically via the API. its cache.  
The key is then transmitted securely back to the application server.

How it works



21

•	 Key derivation in production environments. When a customer attempts to read or 
write encrypted data and the corresponding data encryption key isn’t cached, the 
application server sends a derivation request to the key derivation server. The key 
derivation server authenticates the request and derives the key using the secrets in 
its cache. The key is then transmitted securely back to the application server. 

HSM initialization, secret generation, and key derivation rely on the  
following components:

•	 Master HSM (SafeNet® Luna G5, manufactured by Gemalto®). A FIPS 140-2 
hardware-compliant USB device that generates per-release secrets and secret-
wrapping keys, and signs the public keys of embedded HSMs. The master HSM is 
air-gapped from the network at all times and stored in a bank safety deposit box. 
Access to the master HSM is restricted to designated Salesforce security officers.

•	 Offline laptop. A machine that the master HSM plugs into while in use. The offline 
laptop exports the secrets and keys generated by the master HSM to the internal 
Salesforce file system. 

•	 Embedded HSMs (SafeNet® Luna PCI-E, manufactured by Gemalto®). FIPS 140-2 
hardware-compliant PCI devices that are plugged into key derivation servers in 
Salesforce data centers. Embedded HSMs unwrap secrets that were generated by 
the master HSM, encrypted, and exported to the Salesforce internal file system. 
They also generate tenant secrets, the customer-managed fragments of data 
encryption keys.

•	 Key derivation servers. Clusters of load-balanced servers deployed to Salesforce’s 
production data centers that derive data encryption keys from master secrets and 
tenant secrets.

•	 Application servers. Servers in production environments that run Salesforce. When  
a customer attempts to read or write encrypted data or generate a tenant secret, 
the application server communicates with a key derivation server to process  
the request.

•	 Salesforce internal file system and source control. The location and source control 
mechanism for storing encrypted secrets and their hashes. 



22

SHIELD PLATFORM

HSM Initialization

The master HSM and the embedded HSMs must be initialized before they’re used. 
For the master HSM, the initialization process includes creating a master HSM 
encryption key pair and a master HSM signing key pair. For each embedded HSM, 
the process includes creating an embedded HSM encryption key pair. The master 
HSM public signing key is used to sign and verify each embedded HSM’s public 
encryption key. At the start of each release, the master and embedded HSM public 
encryption keys are used to separately encrypt a per-release master wrapping key, 
which is in turn used to encrypt the remainder of the per-release secrets used to 
derive data encryption keys. This way, each embedded HSM is able to securely 
access the master wrapping key for each release, which it uses to access the rest of 
the per-release secrets needed for key derivation. The private keys in each pair are 
accessible only inside their respective HSMs. 

Figure 6: Key derivation architecture components



23

Per-release secret generation

At the start of each release, the master HSM is plugged into the offline laptop and 
used to generate the per-release secrets and keys (on the HSM itself). 

1.	The master HSM generates the following secrets:master secret
•	 master salt
•	 master wrapping key
•	 tenant wrapping key
•	 transit wrapping key pair  

	 For definitions of each secret and key, refer to the Key and Secret Glossary9.  
Each secret is hashed using SHA-256.

2.	The master wrapping key (MWK) is encrypted with the master HSM public 
encryption key and stored locally on the laptop along with its hash.

3.	Each other secret is encrypted with the master wrapping key and stored on the 
laptop with their hashes.

Secrets

offline computer

MWK

Master HSM

Hashed

Figure 7: Per-release secret generation

https://help.salesforce.com/apex/HTViewHelpDoc?id=security_pe_definitions.htm&language=en_US9

https://help.salesforce.com/apex/HTViewHelpDoc?id=security_pe_definitions.htm&language=en_US


24

SHIELD PLATFORM

Salesforce internal

file system

MWK
offline computer

Salesforce internal

file system

Master HSM

MWK

Figure 8: Per-release secret export

Per-release secret export

Once all the secrets are hashed and encrypted, they are checked into source control 
and exported to the Salesforce internal file system. Additionally, the plaintext 
master wrapping key is encrypted with each embedded HSM’s public encryption 
key, checked into source control, and stored in the Salesforce internal file system. 
Each embedded HSM can access the per-release secrets for key derivation by first 
decrypting the master wrapping key, then using it to decrypt the remaining secrets. 

The process for exporting the secrets includes these steps:

1.	The master wrapping key is read from the file system of the offline laptop and 
decrypted on the master HSM.

2.	The master wrapping key is encrypted with each of the signed, embedded HSMs 
public encryption key.

3.	The encrypted secrets and their hashes are checked into source control and stored 
in the Salesforce internal file system.



25

Key Derivation Server

Cache

EmbeddedHSM
MWK

Secrets

Figure 9: Key derivation server startup

Key derivation server startup

When a key derivation server starts up in a production environment, it accesses each 
release’s encrypted secrets stored in the internal file system, decrypts and validates 
them, and stores them in its cache in preparation for deriving data encryption keys.  
The process includes these steps.

1.	The key derivation server starts up.

2.	The key derivation server accesses the encrypted secrets and their hashes in the 
appropriate folders in the internal file system.

3.	The embedded HSM decrypts the master wrapping key for each release.

4.	Using the master wrapping keys, the key derivation server decrypts the rest of the 
release secrets.

5.	The key derivation server validates all the keys and secrets against their hashes and 
then stores them in its cache.



26

SHIELD PLATFORM

Key Derivation Server

(user generated)

Admin

EmbeddedHSM

TS

TS

TS

TS

Encryption
Service

Figure 10:  On-demand tenant secret generation

On-demand tenant secret generation

Customers can generate tenant secrets every 24 hours in their production or 
Developer Edition organizations and every four hours in their sandbox organizations. 
Tenant secrets can be destroyed at any time. When a customer generates a new 
tenant secret, all future data is encrypted with the key derived from the current 
master secret and the new tenant secret. The tenant secret is generated by an 
embedded HSM connected to a key derivation server. The process of generating a 
tenant secret includes these steps:

1.	 An admin attempts to generate a new tenant secret using the UI or API.

2.	 The encryption service sends an authenticated request to a key derivation server.

3.	 The embedded HSM generates the tenant secret (TS).

4.	 The key derivation server encrypts the tenant secret with the per-release tenant 
wrapping key.

5.	 The key derivation server sends the encrypted tenant secret back to the  
encryption service running on the Salesforce platform.

6.	 The encryption service stores the encrypted tenant secret securely in the database, 
and is used to derive the org’s specific data encryption keys on demand. This 
encrypted tenant secret can only be decrypted in the key derivation server.



27

Figure 11: Customer-supplied tenant secret (BYOK)

Customer-supplied tenant secret (BYOK)

Customers can supply their own tenant secret using the Bring Your Own Key 
(BYOK) service. Once uploaded, BYOK tenant secrets work with the Salesforce 
key management machinery just like Salesforce-generated tenant secrets. BYOK 
tenant secrets can be uploaded once every 24 hours in production and Developer 
Edition orgs, and every 4 hours in sandbox orgs. Additionally, they can be destroyed 
declaratively or programmatically by the customer at any time. When BYOK tenant 
secrets are uploaded, all future data is encrypted with the key derived from the 
current master secret and the new BYOK tenant secret. This org-specific derived data 
encryption key isn’t persisted on disk.

The process for generating and encrypting a BYOK tenant secret will vary depending 
on whether customers use a crypto service, HSM, or key brokering service. However, 
all BYOK tenant secrets need to meet the same basic requirements before they can 
be uploaded to Salesforce. Users need the “Manage Encryption Keys” permissions 
to upload and rotate tenant secrets, and the “Customize Application” permission to 
manage certificates. Grant these permissions to authorized users only. The process of 
generating a customer-supplied tenant secret includes these steps:

Key Derivation Server

Admin

EmbeddedHSM

TS

TS

TS

Encryption
Service

(BYOK)

TS



28

SHIELD PLATFORM

1.	 Users prepare their tenant secret for upload.

a.	 The user generates BYOK-compatible certificate either declaratively or 
programmatically. This can be either a self-signed or CA-signed certificate. The 
customer then downloads this certificate.

b.	The user generates a 256-bit tenant secret using the method of their choice, 
encrypts it with the public key from their BYOK-compatible certificate, and 
encodes the encrypted tenant secret to base64.

c.	 The user calculates an SHA-256 hash of the plaintext tenant secret, then 
encodes this hash to base64.

d.	The user uploads both the encrypted tenant secret and hashed plaintext tenant 
secret files to Salesforce.

e.	The application server then passes the encrypted tenant secret and hashed 
plaintext tenant secret files to the key derivation server.

f.	 The key derivation server derives the BYOK derived encryption key to unwrap 
the certificate’s private key.

g.	 The customer’s uploaded tenant secret is decrypted using the BYOK certificate’s 
private key.

h.	The tenant secret is then hashed using SHA-256, and compared to the SHA-256 
hash provided by the customer.

2.	 If the hashes match, the key derivation server encrypts the tenant secret with the 
per-release tenant wrapping key

3.	 The key derivation server sends the encrypted tenant secret back to the encryption 
service running on the Salesforce platform.

4.	 The encryption service stores the encrypted tenant secret securely in the database, 
and is used to derive the org’s specific data encryption keys on demand. This 
encrypted tenant secret can only be decrypted in the key derivation server.



29

TS

Key Derivation Server

Cache

EmbeddedHSM

TS

Key Derivation
Function

TS

TK

DEK

TK

Cache DEK

Encryption
Service

Figure 12: Customer-supplied tenant secret (BYOK)

Key derivation

When a customer attempts to read or write encrypted data, the encryption service 
transmits the request to a key derivation server to retrieve the appropriate data 
encryption key (unless the key is already in the application server cache). Once 
the data encryption key is returned to the encryption service, the key is stored in 
memory for future requests until the cache is flushed or the organization specific data 
encryption key is discarded, based on the Least Recently Used (LRU) cache algorithm. 
The process for deriving the data encryption key during a decrypt request includes 
these steps (note: encryption is nearly identical):

1.	 A user attempts to read encrypted data.

2.	 The Salesforce platform queries the data from the storage engine. This could be 
the database searach index, or file storage.

3.	 Based on metadata stored with the encrypted data, the encryption service 
retrieves the appropriate encrypted tenant secret from the database.



30

SHIELD PLATFORM

 4. 	 The encryption service sends an authenticated request for the derived key to a key 
derivation server. The request includes the following information:

 5. 	 The encrypted tenant secret

 6. 	 A unique transit key (TK) that’s generated on the Salesforce platform application 
server each time it boots up. The transit key is used to encrypt the derived  
data encryption key before it’s sent back to the encryption service. The transit key is 
itself encrypted by the encryption service with the transit wrapping public key, which is 
half of the transit wrapping key pair generated by the master HSM each release.

 7. 	 The key derivation server decrypts the tenant secret with the appropriate tenant wrap-
ping key in its cache.

 8. 	 The key derivation server derives the requested data encryption key using the appro-
priate master secret, master salt, and tenant secret as inputs to the key derivation 
function (PBKDF2WithHmacSHA256).

 9. 	 The key derivation server decrypts the application server’s transit key with the transit 
wrapping private key.

10. 	The key derivation server encrypts the data encryption key (DEK) with the transit key. 
This ensures that the data encryption key isn’t transmitted in  
the clear.

 11.	The key derivation server sends the encrypted data encryption key back to the encryp-
tion service.

12. 	The encryption service decrypts the data encryption key and caches it.

13. 	Using the data encryption key, the encryption service decrypts the customer data and 
returns it to the user.

 
PBKDF2 Inputs

Data encryption keys are derived using PBKDF2 with the following values as inputs.

•	 PRF—HmacSHA256

•	 Password—master secret XOR tenant secret

•	 Salt—master salt

•	 c—15,000

•	 dkLen—256 



31

Glossary
These are the keys and secrets used in the key derivation architecture.

Data encryption key

FUNCTION: 		  Organization-specific key used to encrypt customer data  
			   (the “final” key) 
TYPE:  			   AES-256 key 
HOW IT’S GENERATED: 	 Generated on a key derivation server with PBKDF2 
WHERE IT’S STORED:	 Never persisted on disk in any form. Derived on demand 
			   and stored in the cache of an application server on  
			   the Salesforce platform.

Embedded HSM encryption key pair

FUNCTION: 		  Used to encrypt and decrypt data that can only be accessed on 	
			   the embedded HSM 
TYPE: 			   4096-bit RSA key pair 
HOW IT’S GENERATED: 	 Generated once, upon initialization of embedded HSM10 
WHERE IT’S STORED:	 Public key is signed by master HSM and stored in the Salesforce 
			   internal file system. Private key cannot be accessed outside of 		
			   embedded HSM.

Master HSM encryption key pair

FUNCTION: 		  Used to encrypt and decrypt data that can only be accessed on 	
			   the master HSM 
TYPE: 			   4096-bit RSA key pair 
HOW IT’S GENERATED:	 Generated once, upon initialization of master HSM11 
WHERE IT’S STORED: 	 Public key is stored in the Salesforce internal file system. Private 
			   key cannot be accessed outside of master HSM.

Master HSM signing key pair

FUNCTION: 		  Used to verify the public keys of embedded HSMs 
TYPE: 			   4096-bit RSA key pair 
HOW IT’S GENERATED: 	 Generated once, upon initialization of master HSM8 
WHERE IT’S STORED:	 Signing key pair cannot be accessed outside of master HSM.

http://www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/luna-hsms-key-management/luna-pci-e/

http://www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/luna-hsms-key-management/luna-sa-network-hsm/#tab2

10

11

http://www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/luna-hsms-key-management/luna-pci-e/
http://www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/luna-hsms-key-management/luna-sa-network-hsm/#tab2 


32

SHIELD PLATFORM

Master salt

FUNCTION: 		  Used as input to PBKDF2 to derive data encryption keys 
TYPE:  			   256-bit value 
HOW IT’S GENERATED: 	 Generated once each release by the master HSM7 
WHERE IT’S STORED:	 Encrypted with master wrapping key and stored in the Salesforce 
			   internal file system.

Master secret

FUNCTION: 		  Used in conjunction with organization tenant secrets to derive 	
			   data encryption keys 
TYPE: 	  		  256-bit value 
HOW IT’S GENERATED:	 Generated once each release by the master HSM7 
WHERE IT’S STORED: 	 Encrypted with master wrapping key and stored in the 
			   Salesforce internal file system.

Master wrapping key

FUNCTION:		  Used to encrypt the master secret, master salt, tenant wrapping 	
			   key, and transit wrapping private key before they are stored in 		
			   the Salesforce internal file system 
TYPE:  			   AES-256 key 
HOW IT’S GENERATED: 	 Generated once each release by the master HSM7 
WHERE IT’S STORED:	 Encrypted with each embedded HSM’s public encryption key 
			   and the master HSM’s public encryption key and stored in the 	
			   Salesforce internal file system. 

Tenant secret

FUNCTION: 		  Combined with the master secret to derive a unique data  
			   encryption key 
TYPE:  			   256-bit value 
HOW IT’S GENERATED: 	 Generated on customer demand by an embedded HSM on 
			   a key derivation server 
WHERE IT’S STORED: 	 Encrypted with the tenant wrapping key, sent from the 
			   key derivation server to an application server on 
			   the Salesforce platform, and stored in the database.



33

Search index IV

FUNCTION:		  Used as input to PBKDF2 to derive data encryption keys
TYPE:			   256-bit value
HOW IT’S GENERATED: 	 Generated per search index segment when the search index 		
			   segment is updated
WHERE IT’S STORED:	 Encrypted with search key and stored in the search index 		
			   segment header.

Search index data encryption key

FUNCTION: 		  Used to encrypt and decrypt the search index segment after  
			   indexing completes. 
TYPE: 			   AES-256 key
HOW IT’S GENERATED: 	 Generated on a key derivation server with PBKDF2.
WHERE IT’S STORED: 	 Never persisted on disk in any form. Derived on demand and 		
			   stored in the cache of the search index.

Tenant secret

FUNCTION: 		  Combined with the master secret to derive a unique  
			   data encryption key
TYPE:			   256-bit value
HOW IT’S GENERATED:	 Generated on customer demand by an embedded HSM on  
			   a key derivation server
WHERE IT’S STORED:	 Encrypted with the tenant wrapping key, sent from the 
			   key derivation server to an application server on the App Cloud, 	
			   and stored in the database. 

Tenant wrapping key

FUNCTION:		  Used to encrypt tenant secrets before they are stored in  
			   the database 
TYPE:  			   AES-256 key 
HOW IT’S GENERATED: 	 Generated once each release by the master HSM7 
WHERE IT’S STORED: 	 Encrypted with the master wrapping key and stored in the 
			   Salesforce internal file system. 



34

SHIELD PLATFORM

Transit key

FUNCTION:		  Used to encrypt derived data encryption keys before they are 		
			   sent from the key derivation server to the application server 
			   on the Salesforce platform 
TYPE:  			   AES-256 key 
HOW IT’S GENERATED:	 Generated on each application server upon startup 
			   using the JCE class SecureRandom, and sent to the key 		
			   derivation server upon a key derivation request 
WHERE IT’S STORED:	 Stored in application server memory. Never persisted on disk

Transit wrapping key pair

FUNCTION: 		  Used to encrypt the transit key before it’s sent from the 		
			   application server to a key derivation server 
TYPE: 			   4096-bit RSA key pair 
HOW IT’S GENERATED: 	 Generated once each release by the master HSM7 
WHERE IT’S STORED: 	 Public key is stored in the Salesforce internal file system. 
			   Private key is encrypted with master wrapping key and stored 		
			   on the Salesforce internal file system.

Get Started with Shield Platform Encryption  

To see how Shield Platform Encryption can help your company, 
contact your account executive or call 1-844-463-0828 today.

For more information, please visit salesforce.com/platform

https://www.salesforce.com/platform







