

Salesforce Touch Platform
Mobile Development Guide

Salesforce Touch Platform

© Copyright 2000–2012 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark
of salesforce.com, inc., as are other names and marks. Other marks appearing herein may be
trademarks of their respective owners.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

ISBN: 978-1-4276-9555-0

Written by Mario Korf, with contributions from Michael Alderete, Alex Berg, Sandeep Bhanot, Josh
Birk, Steve Bobrowski, Jack Cai, Cory Cowgill, Anita Dennis, Tom Gersic, Akhilesh Gupta, Kevin Hawkins,
Mike Jacobsen, Wolfgang Mathurin, Eugene Oksman, Pat Patterson, Adam Seligman, Richard Whitley,
Quinton Wall, Clive Wong, and Rob Woollen

Table of Contents

Preface..1
The Salesforce Touch Platform..3

Force.com for Touch..3
Mobile Container (Salesforce Mobile SDK 1.3)..4
Identity...4

The Dreamforce App...5
About This Book..6

Chapter Contents...6
Version..6
Sending Feedback...7

Keeping Up to Date..7
Mobile SDK GitHub Repository...7

Chapter 1: Introduction to Mobile Development on the Salesforce Touch
Platform...9

About Native, HTML5, and Hybrid Development...10
Multi-Device Strategy..14
Development Prerequisites...18

Choosing Between Database.com and Force.com..18
Sign Up for Force.com..18
Sign Up for Database.com..19

Supported Browsers..19
Enough Talk, I’m Ready..21

Chapter 2: Authentication, Security, and Identity in Mobile Apps.............23
OAuth2 Authentication Flow..24

OAuth 2.0 User-Agent Flow..24
OAuth 2.0 Refresh Token Flow...26
Scope Parameter Values..26
Using Identity URLs..27
Revoking OAuth Tokens..32

Creating a Remote Access Application..33

i

Table of Contents

Chapter 3: Connected Apps...35
Developing and Managing Connected Apps..36
Developer Tasks...36

Creating a Connected App...36
Connected App Basic Information...37
Connected App API Integration..38
Connected App Mobile Integration..39
Connected App IP Ranges..39

Publishing a Connected App..40
Deleting a Connected App...41
Updating a Connected App..41

Administrator Tasks...41
Installing a Connected App..41
Managing a Connected App...42
About PIN Security..45
Uninstalling a Connected App...45
Upgrading a Connected App..46
Connected App Error Codes..46

Chapter 4: Native iOS Development..47
iOS Native Quick Start..48

Native iOS Requirements...48
Installing the Mobile SDK for iOS..48
Creating a New Native iOS App in Xcode...48

Running the Xcode Project Template App...49
Using the Mobile SDK in an Existing Project...50
iOS RestAPIExplorer Sample Application..50

Chapter 5: Native Android Development..51
Android Native Quick Start...52

Native Android Requirements..52
Installing the Mobile SDK for Android...53
Creating a New Android Project..53

Android Template Application...54
Setting Up Projects in Eclipse..54

Android Project Files..55

ii

Table of Contents

Cleaning and Building From Eclipse..55
Android RestExplorer Sample Application..56

Chapter 6: Hybrid Development..57
Hybrid Apps Quick Start...58

Hybrid Apps Requirements..58
Creating a Hybrid App Project for iOS..59
Creating a Hybrid Project for Android...60

Running the Sample Hybrid App...60
How the Sample App Works..63

Create a Mobile Page to List Information..64
Create a Mobile Page for Detailed Information...68
Support Social Collaboration with Chatter..70

Modify the App's View (index.html)..71
Modify the App's Controller (inline.js)..72
Try Out the App...75

iOS Hybrid Sample Application...76
Android Hybrid Sample Application...77

Chapter 7: Hybrid Development with Mobile Components for
Visualforce..79

Mobile Components for VisualforceArchitecture...80
Visualforce Mobile Open Components..80

Visualforce App Component..81
Visualforce Navigation Component..81
Visualforce SplitView Template...81
Visualforce Page Component..82

Visualforce Header Component..82
Visualforce Content Component..82
Visualforce List Component...83
Visualforce Detail Component...83
Visualforce Footer Component...83

Installing the Components...84
Creating Your First Tablet Page...85

Easy Integration..87
Creating a Mobile Component for Visualforce..88

iii

Table of Contents

Chapter 8: HTML5 Development..101
HTML5 Development Requirements..102
Accessing Data Using JavaScript..102

Chapter 9: Securely Storing Data Offline..105
Accessing SmartStore in Hybrid Apps...106
Offline Hybrid Development...106
Using the Mock SmartStore...107
Registering a Soup..108
Retrieving Data From a Soup...110
Working With Cursors...112
Manipulating Data...113
SmartStore Extensions..116

Chapter 10: Advanced Topics...117
Customize the Hybrid Sample App to Use the Camera...118

Run the App...119
How the Demo App Works...121

Bar Code and QR Code Scanning..124
Geolocation and Mobile Apps..127
Utilizing Near Field Communication (NFC) in Hybrid Apps.....................................128

Requirements..129
Force.com and NFC Mobile Application Architecture....................................129
Installing the NFC PhoneGap Plugin..130
Invoking the NFC Plugin via JavaScript...131
Upserting the Information into Force.com with Mobile SDK.........................133
Wrap Up - The Internet of Things and the Future of NFC............................133

Chapter 11: Distributing Mobile AppExchange Apps..............................135
AppExchange for Mobile: Enterprise Mobile Apps...136
Joining the AppExchange Partner Program...137
Get a Publishing Org..138
Create a Provider Profile..139
The AppExchange Security Review...140

Chapter 12: Reference..143
REST API Resources...144

iv

Table of Contents

iOS Architecture...145
Native iOS Objects...146

Android Architecture..147
Java Code..150
Libraries..153
Resources..154

Glossary..157

Index...171

v

Table of Contents

Preface

In 1981, the IBM PC was released with a 5Mhz 16 bit processor running Microsoft DOS. In
2012, the Apple iPhone 4s was released with a dual-core, 1GHz processor. Thirty years of
hardware and software gave us three orders of magnitude of performance improvement -- in our
pockets. We live in a world with 2.3B internet users and 6.1B mobile phone users.

Mobile devices have radically changed the way we work and play. Workers stay in touch, connect
with customers and peers, and engage on social networks and apps. Data must be consumed,
created, and shared from a wide range of connected devices.

Most companies have an assortment of applications they run their businesses on, but most of
these apps don’t work in the mobile world. They simply aren’t available in the workers’ hands
when they need them. HR, ERP, intranets, and custom apps are locked away. They don’t
provide the app experience users expect, and they aren’t wired into social graphs like consumer
apps.

Yesterday’s platforms were not designed for the fundamental changes needed in the mobile
world.

The platforms most companies have bought and built these old apps around were not built for
this new world. Big monolithic stacks and rigid integration patterns don’t work in this mobile
world. These apps are getting replaced by cloud apps every day.

Mobile applications require fundamentally new architectures and application designs. The
techniques that evolved since the 1990s for web applications on PCs don’t apply in the mobile
world. Enterprise mobile applications need a new, modern platform designed for the demands
of mobile application development.

1

Table 1: Comparison of PC/Web applications and a modern mobile application

Mobile / modern applicationTypical PC / Web applicationCategory

Connection
and Availability

• Varying connection• Fast, reliable LAN
• •Low latency High latency

•• Low bandwidthHigh bandwidth
• •Connectivity assumed Offline operation required

User
Interactions

• Touch screen• Keyboard and mouse
• •Long desktop interactions Quick, focused actions

Perimeter
Security

• Cumbersome to require VPN from
mobile devices

• Corporate VPN or LAN access
to applications

• IP restrictions ineffective with public
mobile networks

Device
Standardization

• Often Bring Your Own Device
(BYOD)

• Typically purchased and
controlled by IT

• Multiple platforms

Form Factor •• Apps must support phone, tablet, and
PC

Large (PC) screen

Social • Native user collaboration• Typically siloed applications
• •Email-based collaboration Intuitively share and collaborate

Multi-device • Instant sharing between devices• Client-server architectures with
data stored on server (Web) • Data propogation between devices

Device
Interaction

•• Native use of mobile device’s camera,
contacts, calendar, and location

Applications rarely leverage
telephony, camera etc.

Location •• Commonly used to both associate data
with a location and filter data and
services based on location

Rarely used in web applications

2

Preface

The Salesforce Touch Platform
Enterprise IT departments now face the daunting task of connecting their enterprise data and
services with a mobile workforce. Salesforce faced this problem itself as it moved its enterprise
CRM and service applications to the mobile world. This transformation required fundamental
changes in the underlying technology and implementation to support Salesforce’s applications
across multiple platforms (iPad, Android, and iPhone), multiple form factors (phone, tablet,
and PC) with enterprise-grade reliability, availability, and security. The lessons learned and
technology built to transform Salesforce’s applications for mobile are now available for any
company.

The Salesforce Touch Platform is the first enterprise platform designed to address the
challenges of mobile applications.

The Salesforce Touch Platform is the next-generation platform that powers Salesforce’s mobile
applications and enables enterprises to build their own iPad, Android, and iPhone applications.
The Salesforce Touch Platform is designed for a mobile world with applications built using
modern, agile development practices. It leverages the power of the Salesforce platform and its
proven security, reliability, and scale for enterprise applications.

The Salesforce Touch Platform contains three core components:

• Force.com for Touch
• Mobile Container (Salesforce Mobile SDK 1.3)
• Identity

Force.com for Touch

Force.com for Touch is a new layer of services in the Salesforce Platform focused on developing
and administering enterprise mobile applications.

• Mobile REST APIs provide access to enterprise data and services, leveraging standard web
protocols. Developers can quickly expose their business data as REST APIs and leverage
those common APIs across their different phone, tablet, and web user interfaces. The
REST APIs provide a single place to enforce access, security, common policy, and
enforcement across all device types.

• Social (Chatter) REST APIs enable developers to quickly transform their applications with
social networks and collaboration features. The Chatter REST APIs provide access to the
feed, as well as the social graph of user connections. Mobile applications can easily consume
or post items to a user or group, or leverage the social graph to enable instant collaboration
between connected users.

3

Preface

• Mobile Policy management enables administrators to enforce their enterprise security policy
on mobile applications in a world without perimeter security. Administrators can enable
security features such as 2-factor authentication, device PIN protection, and password
rotation, as well as enabling or disabling user access to mobile applications.

• Geolocation provides location-based information to enhance your online business processes
with geospatial data. Starting with the Winter ‘13 release, all objects in Salesforce include
a compound geolocation field. The entire platform is location-ready, allowing spatial query
functionality such as radius-based searching.

Mobile Container (Salesforce Mobile SDK 1.3)

The Mobile Container can be used to develop both native Objective C iOS or Java Android
Apps, or it can be used to provide a native container for HTML5-based hybrid apps. Wizards
for iOS and tooling for Android are provided to easily get started building native and hybrid
apps. The mobile container is implemented by the Salesforce Mobile SDK and includes:

• Native device services allow developers to easily add camera, location, and contacts into
their application using a common set of APIs across a broad range of devices, including
iPhone, iPad, and Android devices.

• Secure offline storage enables developers to build applications which continue to function
with limited or no network connectivity. The data stored on the device is securely encrypted
and safe even if the device is lost or stolen.

• Client OAuth authentication support freeing developers from having to rebuild login pages
and general authentication in their mobile applications. It quickly and easily integrates
mobile applications with enterprise security management.

Identity

Identity provides a single enterprise identity and sign-on service to connect mobile devices
with enterprise data and services, providing the following advantages:

• Allows for single sign-on across applications and devices so users are not forced to create
multiple usernames and passwords.

• A trusted identity provider that you can leverage for any enterprise platform or application.
• A Cloud Directory that enables enterprises to white label identity services and use

company-speicific appearance and branding.
• The ability to utilize consumer identity providers, such as Facebook, for customer-facing

applications to quickly engage with customer social data.

4

Preface

The Dreamforce App
The Dreamforce conference requires an application that works for thousands of users around
the world, across PC browsers, tablets, and mobile devices. The app had to scale to the peak
loads of a weeklong conference with tens of thousands of attendees accessing the application
in real-time from their mobile devices. In other words, the app had to be mobile-first.
Salesforce.com built the Dreamforce 2012 App on the Salesforce Touch Platform leveraging
the technology you'll learn in this book.

If you used the Dreamforce 2012 App in the weeks prior to Dreamforce, you might have
accessed the app with your browser or a tablet. Or if you’re currently attending Dreamforce,
you might be accessing the app with your smartphone. Whatever the case you get the same
information in an app that was created for multiple display forms using responsive design.

Responsive design provides an optimal user experience no matter what the device. Be it a PC
browser, tablet, or mobile device, you can view and use the app with a minimum of resizing,

5

Preface

panning, and scrolling, while taking advantage of the features and functionality native to the
device. If you’ve used the Dreamforce app from more than one device, you probably already
know this.

About This Book
This book introduces you to the Salesforce Touch Platform and teaches you how to architect,
develop, and manage mobile applications for the cloud.

Note: An online version of this book is available at Developer Force at
.

Chapter Contents

The organization of this guide is loosely based on how you’d develop an application. This guide
takes a look at architectural decisions first, then go into some important details on security,
and then proceeds directly into development.

You might have noticed that native development comes first. This doesn’t reflect a preference
for development options; every development scenario has its time and place. But because the
hybrid tutorials require some of the native setup, the chapters are ordered in reverse complexity.
In other words, once you’re set up for native, the rest is easy.

Thereafter the chapters take on the more complex tasks, such as caching data offline, accessing
the camera, implementing social collaboration, and other fascinating etceteras. Finally it’s all
wrapped up with an invitation to join or Partner Program so you can list your mobile app on
our AppExchange.

Version

This book was last revised on September 7th, 2012 and was verified to work with the Salesforce
Winter ‘13 release and the Mobile SDK version 1.3.

6

Preface

Sending Feedback

Questions or comments about anything you see in this book? Suggestions for topics that you'd
like to see covered in future versions? Go to the Force.com discussion boards at

 and let us know what you think! Or email us
directly at developerforce@salesforce.com.

Keeping Up to Date
To keep up to date, you should know the following.

• Whenever a new version of Salesforce is released, the Mobile section of the release notes
captures all of the important details.

• This guide is updated frequently, and you can find the latest version online at
. If you’re reading

a printed version of this guide, see Version on page 6.
• You can always find the most current Mobile SDK release in the Mobile SDK GitHub

Repository.
• The latest articles, blog posts, tutorials, and webinars are on

.
• Please join the conversation on the message boards at

.

Mobile SDK GitHub Repository

The Mobile SDK development team uses GitHub to host and store source code for the Mobile
SDK.

You can always find the latest Mobile SDK releases in our public repositories:

•
•

Note: You might want to bookmark the Mobile SDK home page
, for the latest articles,

blog posts, tutorials, and webinars.

7

Preface

mailto:developerforce@salesforce.com
http://wiki.developerforce.com/page/Force.com_Books
http://wiki.developerforce.com/page/Mobile
http://boards.developerforce.com/t5/Mobile/bd-p/mobile
https://github.com/forcedotcom
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android
http://wiki.developerforce.com/page/Mobile_SDK

Chapter 1

Introduction to Mobile Development on the
Salesforce Touch Platform

The Force.com platform has proven itself as an easy,
straightforward, and highly productive platform for cloud

In this chapter ...

• About Native, HTML5,
and Hybrid Development

computing. Developers can define application components,
such as custom objects and fields, workflow rules, Visualforce
pages, and Apex classes and triggers, using point-and-click• Multi-Device Strategy
tools of the Web interface, and assembling the components• Development Prerequisites
into killer apps. As a mobile developer, you might be• Supported Browsers
wondering how you can leverage the power of the Force.com
platform to create sophisticated apps.• Enough Talk, I’m Ready

The Salesforce Touch Platform provides essential libraries
for quickly building native or hybrid mobile apps that
seamlessly integrate with the Force.com cloud architecture,
and simplifies development by providing:

• Device access
• Enterprise container for hybrid applications
• Geo-location
• HTML5 development
• Native REST API wrappers
• OAuth access token management
• Secure offline storage
• Social and Mobile APIs

9

About Native, HTML5, and Hybrid Development
Many factors play a part in your mobile strategy, such as your team’s development skills, required
device functionality, the importance of security, offline capability, interoperability, and so on.
In the end, it’s not just a question of what your app will do, but the process of how you’ll get
it there. The Salesforce Touch Platform offers three ways to create mobile apps:

• Native apps are specific to a given mobile platform (iOS or Android) and use the
development tools and language that the platform supports (e.g., Xcode and Objective-C
with iOS, Eclipse and Java with Android). Native apps look and perform the best.

• HTML5 apps aren’t installed from an app store, they delivered through a Web server and
run in a mobile Web browser. These apps use standard Web technologies, like HTML5,
JavaScript and CSS to deliver apps to any device. This write-once-run-anywhere approach
to mobile development creates cross-platform mobile applications that work on multiple
devices. While developers can create sophisticated apps with HTML5 and JavaScript alone,
some vital limitations remain, specifically session management, secure offline storage, and
access to native device functionality.

• Hybrid apps combine the ease of HTML5 development with the power of the native
platform by wrapping a Web app inside the Salesforce Mobile Container. This approach
produces an application that can leverage the device’s native capabilities and be delivered
through the app store. You can also create hybrid apps using Visualforce pages. Both kinds
of hybrid development are covered in this guide.

10

Chapter 1: Introduction to Mobile Development on the Salesforce Touch Platform

Native Apps
Native apps provide the best usability, features, and overall mobile experience. There are some
things you only get with native apps:

• Multi touch — double taps, pinch-spread, and other compound UI gestures
• Fast graphics API — the native platform gives you the fastest graphics, which might not

be a problem if you’re showing a static screen with only a few elements, but might be an
issue if you’re using a lot of data and require a fast refresh.

• Fluid animation — related to the fast graphics API is the ability to have fluid animation.
This is especially important in gaming, highly interactive reporting, or intensely
computational algorithms for transforming photos and sounds.

• Built-in components — The camera, address book, geolocation, and other features native
to the device can be seamlessly integrated into mobile apps. Another important built-in
component is encrypted storage, but more about that later.

• Ease of use — The native platform is what people are accustomed to, and so when you
add that familiarity with all of the native features they expect, you have an app that’s just
plain easier to use.

Native apps are usually developed using an integrated development environment (IDE). IDEs
provide tools for building debugging, project management, version control, and other tools
professional developers need. You need these tools because native apps are more difficult to
develop. Likewise, the level of experience required is higher than other development scenarios.
If you’re a professional developer, you don’t have to be sold on proven APIs and frameworks,

11

Introduction to Mobile Development on the Salesforce Touch Platform

painless special effects through established components, or the benefits of having your code
all in one place.

HTML5 Apps
An HTML5 mobile app is basically a web page, or series of Web pages, that are designed to
work on a tiny screen. As such, HTML5 apps are device agnostic and can be opened with any
modern mobile browser. And because your content is on the web, it's searchable, which can
be a huge benefit depending on the app (shopping, for example).

If you're new to mobile development, the technological bar is lower for Web apps; it's easier
to get started here than in native or hybrid development. Unfortunately, every mobile device
seems to have their own idea of what constitutes usable screen size and resolution, and so
there's an additional burden of testing on different devices. Browser incompatibility is especially
rife on Android devices, so browser beware.

An important part of the "write-once-run-anywhere" HTML5 methodology is that distribution
and support is much easier than for native apps. Need to make a bug fix or add features? Done
and deployed for all users. For a native app, there are longer development and testing cycles,
after which the consumer typically must log into a store and download a new version to get
the latest fix.

If HTML5 apps are easier to develop, easier to support, and can reach the widest range of
devices, where do these apps lose out?

• Offline storage — You can implement a semblance of offline capability by caching files
on the device. Even if the underlying database is encrypted, this is not as secure or as well
segmented as a native keychain encryption that protects each app with a developer certificate.

• Security — In general, implementing even trivial security measures on a native platform
can be complex tasks for a mobile Web developer. It can also be painful for users. For
example, if a web app with authentication is launched from the desktop, it will require users
to enter their credentials every time the app is sent to the background.

• Native features — the camera, address book, and other native features can’t be accessed.
• Native look and feel — HTML5 can only emulate the native look, while users won’t be

able to use compound gestures they are familiar with.

Hybrid Apps
Hybrid apps are built using HTML5 and JavaScript wrapped inside a thin container that
provides access to native platform features. For the most part, hybrid apps provide the best of
both worlds, being almost as easy to develop as HTML5 apps with all the functionality of
native.

You know that native apps are installed on the device, while HTML5 apps reside on a Web
server, so you might be wondering if hybrid apps store their files on the device or on a server?
Yes. In fact there are two ways to implement a hybrid app.

12

Chapter 1: Introduction to Mobile Development on the Salesforce Touch Platform

• Local - You can package HTML and JavaScript code inside the mobile application binary,
in a manner similar to the structure of a native application. In this scenario you use REST
APIs and Ajax to move data back and forth between the device and the cloud.

• Server - Alternatively, you can implement the full web application from the server (with
optional caching for better performance). Your container app retrieves the full application
from the server and displays it in a browser window. Visualforce hybrid applications operate
in this manner.

Both types of development are covered in this guide, but in different chapters.

Native, HTML5, and Hybrid Summary
The following table sums up how the three mobile development scenarios stack up.

HybridHTML5Native

HTML, Canvas, SVGHTML, Canvas,
SVG

Native APIsGraphics

SlowerSlowerFasterPerformance

EmulatedEmulatedNativeLook and feel

App storeWebApp storeDistribution

YesNoYesCamera

YesNoYesNotifications

YesNoYesContacts, calendar

Secure file system,
shared SQL

Shared SQLSecure file systemOffline storage

YesYesYesGeolocation

YesYesYesSwipe

YesYesYesPinch, spread

Online, offlineMostly onlineOnline, offlineConnectivity

HTML5, CSS,
JavaScript

HTML5, CSS,
JavaScript

Objective-C, JavaDevelopment skills

13

Introduction to Mobile Development on the Salesforce Touch Platform

Multi-Device Strategy
With the proliferation of mobile devices in this post-PC era, applications now have to support
a variety of platforms, form factors, and device capabilities. Some of the key considerations
and design options for Force.com developers looking to develop such device-independent
applications are:

• Which devices and form factors should your app support?
• How does your app detect various types of devices?
• How should you design a Force.com application to best support multiple device types?

Which Devices and Form Factors Should Your App Support?
The answer to this question is dependent on your specific use case and end-user requirements.
It is, however, important to spend some time thinking about exactly which devices, platforms,
and form factors you do need to support. Where you end up in the spectrum of ‘Support all
platforms/devices/form factors’ to ‘Support only desktop and iPhone’ (as an example) will play
a major role in how you answer the subsequent two questions.

As can be expected, important trade-offs have to be made when making this decision.
Supporting multiple form factors obviously increases the reach for your application. But, it
comes at the cost of additional complexity both in terms of initially developing the application,
and maintaining it over the long-term.

Developing true cross-device applications is not simply a question of making your web page
look (and perform) optimally across different form factors and devices (desktop vs phone vs
tablet). You really need to rethink and customize the user experience for each specific
device/form factor. The phone or tablet version of your application very often does not need
all the bells and whistles supported by your existing desktop-optimized Web page (e.g.,
uploading files or supporting a use case that requires many distinct clicks).

Conversely, the phone/tablet version of your application can support features like
geolocation and taking pictures that are not possible in a desktop environment. There are even
significant differences between the phone and tablet versions of the better designed applications
like LinkedIn and Flipboard (e.g,. horizontal navigation in a tablet version vs single hand
vertical scrolling for a phone version). touch.salesforce.com is another example of a user
experience that is customized for a specific form factor. Think of all these consideration and
the associated time and cost it will take you to support them when deciding which devices and
form factors to support for your application.

Once you’ve decided which devices to support, you then have to detect which device a particular
user is accessing your Web application from.

14

Chapter 1: Introduction to Mobile Development on the Salesforce Touch Platform

http://blogs.salesforce.com/company/2011/08/introducing-touchsalesforcecom-touch-success.html

Client-Side Detection
The client-side detection approach uses JavaScript (or CSS media queries) running on the
client browser to determine the device type. Specifically, you can detect the device type in two
different ways.

• Client-Side Device Detection with the User-Agent Header — This approach uses
JavaScript to parse out the User-Agent HTTP header and determine the device type based
on this information. You could of course write your own JavaScript to do this. A better
option is to reuse an existing JavaScript. A cursory search of the Internet will result in many
reusable JavaScript snippets that can detect the device type based on the User-Agent header.
The same cursory search, however, will also expose you to some of the perils of using this
approach. The list of all possible User-Agents is huge and ever growing and this is generally
considered to be a relatively unreliable method of device detection.

• Client-Side Device Detection with Screen Size and/or Device Features — A better
alternative to sniffing User-Agent strings in JavaScript is to determine the device type based
on the device screen size and or features (e.g., touch enabled). One example of this approach
can be found in the open-source Contact Viewer HTML5 mobile app that is built entirely
in Visualforce. Specifically, the MobileAppTemplate.page includes a simple JavaScript
snippet at the top of the page to distinguish between phone and tablet clients based on the
screen size of the device. Another option is to use a library like Device.js or Modernizr to
detect the device type. These libraries use some combination of CSS media queries and
feature detection (e.g., touch enabled) and are therefore a more reliable option for detecting
device type. A simple example that uses the Modernizr library to accomplish this can be
found at

.
A more complete example that uses the library and integrates with Visualforce
can be found in this GitHub repo:

. Here is a snippet
from the DesktopVersion.page in that repo.

15

Introduction to Mobile Development on the Salesforce Touch Platform

The snippet above shows how you can simply include a <link> tag for each device type that
your application supports and the Device.js library will take care of automatically redirecting
users to the appropriate Visualforce page based on device type detected. There is also a way to
override the default Device.js redirect by using the ‘?device=xxx’ format shown above.

Server-Side Device Detection
Another option is to detect the device type on the server (i.e., in your Apex controller/extension
class). Server-side device detection is based on parsing the User-Agent HTTP header and here
is a small code snippet of how you can detect if a Visualforce page is being viewed from an
iPhone client.

Note that User-Agent parsing in the code snippet above is far from comprehensive and you
should implement something more robust that detects all the devices that you need to support
based on regular expression matching. A good place to start is to look at the RegEx included
in the detectmobilebrowsers.com code snippets.

16

Chapter 1: Introduction to Mobile Development on the Salesforce Touch Platform

How Should You Design a Force.com Application to Best Support
Multiple Device Types?
Finally, once you know which devices you need to support and how to distinguish between
them, what is the optimal application design for delivering a customized user experiences for
each device/form factor? Again, a couple of options to consider.

For simple applications where all you need is for the same Visualforce page to display well
across different form factors, a responsive design approach is an attractive option. In a nutshell,
Responsive design uses CCS3 media queries to dynamically reformat a page to fit the form
factor of the client browser. You could even use a responsive design framework like Twitter
Bootstrap to achieve this.

Another option is to design multiple Visualforce pages, each optimized for a specific form
factor and then redirect users to the appropriate page using one of the strategies described in
the previous section. Note that having separate Visualforce pages does not, and should not,
imply code/functionality duplication. A well architected solution can maximize code reuse
both on the client-side (by using Visualforce strategies like Components, Templates etc.) as
well as the server-side (e.g., encapsulating common business logic in an Apex class that gets
called by multiple page controllers). An excellent example of such a design can be found in the
same open-source Contact Viewer application referenced before. Though the application
has separate pages for its phone and tablet version (and

 respectively), they both share a common template
(), thus maximizing code and artifact reuse. The figure below
is a conceptual representation of the design for the Contact Viewer application.

17

Introduction to Mobile Development on the Salesforce Touch Platform

Lastly, it is also possible to service multiple form factors from a single Visualforce page by
doing server-side device detection and making use of the ‘rendered’ attribute available in most
Visualforce components (or more directly, the CSS ‘display:none/block’ property on a <div>
tag) to selectively show/hide page elements. This approach however can result in bloated and
hard-to-maintain code and should be used sparingly.

Development Prerequisites
It’s helpful to have some experience with Database.com or Force.com. You'll need either a
Database.com account or a Force.com Developer Edition organization.

This guide also assumes you are familiar with the following platforms and technologies:

• To build iOS applications, you'll need Mac OS X Snow Leopard or Lion, and Xcode 4.2+.
• To build Android applications, you'll need the Java JDK 6, Eclipse, Android ADT plugin,

and the Android SDK.
• To build hybrid applications, you’ll need an organization that has Visualforce.
• Most of our resources are on GitHub, a social coding community. You can access all of

our files in our public repository, but we think it’s a good idea to join.
https://github.com/forcedotcom

Choosing Between Database.com and Force.com

You can build mobile applications that store data on a Database.com or Force.com organization.
Hereafter, this guide assumes you are using a Force.com Developer Edition that uses Force.com
login end points such as . However, you can simply substitute your
Database.com credentials in the appropriate places.

Note: If you choose to use Database.com, you can’t develop any Visualforce–driven
apps.

Sign Up for Force.com

1. In your browser go to .
2. Fill in the fields about you and your company.
3. In the field, make sure to use a public address you can easily check

from a Web browser.

18

Chapter 1: Introduction to Mobile Development on the Salesforce Touch Platform

https://github.com/forcedotcom
http://developer.force.com/join

4. Enter a unique . Note that this field is also in the form of an email address,
but it does not have to be the same as your email address, and in fact, it's usually
better if they aren't the same. Your username is your login and your identity on

, and so you're often better served by choosing a username
that describes the work you're doing, such as , or that
describes you, such as .

5. Read and then select the checkbox for the .
6. Enter the Captcha words shown and click Submit Registration.
7. In a moment you'll receive an email with a login link. Click the link and change your

password.

Sign Up for Database.com

1. In your browser go to .
2. Click Signup.
3. Fill in the fields about you and your company.
4. In the field, make sure to use a public address you can easily check

from a Web browser.
5. The field is also in the form of an email address, but it does not have to

be the same as your actual email address, or even an email that you use. It’s helpful
to change the username to something that describes the use of the organization. In
this workbook we’ll use admin-user@workbook.db.

6. Enter the Captcha words shown.
7. Read and then select the checkbox for the

and supplemental terms.
8. Click Sign Up.
9. After signing up, you’ll be sent an email with a link that you must click to verify your

account. Click the link.
10. Now supply a password, and a security question and answer.

Supported Browsers
Salesforce supports the following browsers:

19

Introduction to Mobile Development on the Salesforce Touch Platform

http://www.database.com/

CommentsBrowser

If you use Internet Explorer, we recommend using the
latest version. Apply all Microsoft hotfixes. Note these
restrictions:

Microsoft® Internet Explorer®

versions 7, 8, 9, and 10

• The compatibility view feature in Internet Explorer is
not supported.

• The Metro version of Internet Explorer 10 is not
supported.

For configuration recommendations, see “Configuring
Internet Explorer” in the online help.

Salesforce.com makes every effort to test and support the
most recent version of Firefox. For configuration

Mozilla® Firefox®, most recent
stable version

recommendations, see “Configuring Firefox” in the online
help.

Google Chrome applies updates automatically;
salesforce.com makes every effort to test and support the

Google Chrome™, most recent
stable version

most recent version. There are no configuration
recommendations for Chrome. Chrome is not supported
for the Console tab or the Add Google Doc to Salesforce
browser button.

Supported plug-in for Internet Explorer 6 and 7 only.
Google Chrome Frame applies updates automatically;

Google Chrome Frame™ plug-in
for Microsoft® Internet Explorer®

6 and 7 Salesforce supports only the most recent version. For
configuration recommendations, see “Installing Google
Chrome Frame for Microsoft® Internet Explorer®” in the
online help. Chrome Frame plug-in is not supported for
the Service Cloud console or Forecasts.

There are no configuration recommendations for Safari.
Apple Safari on iOS is not supported. Safari is not

Apple® Safari® version 5.1.x on
Mac OS X

supported for the Salesforce CRM Call Center CTI
Toolkit or the Service Cloud console.

Note: Salesforce uses the following domains to deliver content. If your users are
allowed general access to the Internet, there is no required action. If you whitelist
domains, you must add these to your list of allowed domains. If you’ve disabled
third-party cookies (typically enabled by default in all major browsers), you must accept
them for Salesforce to function properly.

20

Chapter 1: Introduction to Mobile Development on the Salesforce Touch Platform

• *.staticforce.com
• *.content.force.com
• *.force.com
• *.salesforce.com

Important: For all browsers you must enable JavaScript, cookies, and SSL 3.0.

Some third-party Web browser plug-ins and extensions can interfere with the
functionality of Chatter. If you experience malfunctions or inconsistent behavior with
Chatter, disable all of the Web browser's plug-ins and extensions and try again.

Salesforce.com recommends a minimum screen resolution of 1024 x 768 for the best
possible user experience. Screen resolutions smaller than 1024 x 768 may cause issues
displaying Salesforce features such as Report Builder and Page Layout Editor.

Refer to the documentation for those products for specific information. Other
requirements can be found in Salesforce System Requirements.

Enough Talk, I’m Ready
If you’d rather read about the details later, there are Quick Start topics in this guide for each
native development scenario. There’s also a Mobile SDK Workbook that walks you through
downloading and running a simple mobile app in each platform, and for each development
scenario.

• iOS Native Quick Start on page 48
• Android Native Quick Start on page 52
• Hybrid Apps Quick Start on page 59
• Download the Mobile SDK Workbook from

https://github.com/forcedotcom/SalesforceMobileSDK-Samples

21

Introduction to Mobile Development on the Salesforce Touch Platform

http://na1.salesforce.com/help/doc/en/salesforce_technical_requirements.pdf
https://github.com/forcedotcom/SalesforceMobileSDK-Samples/blob/master/Mobile_SDK_Workbook.pdf
https://github.com/forcedotcom/SalesforceMobileSDK-Samples

Chapter 2

Authentication, Security, and Identity in
Mobile Apps

Secure authentication is essential for enterprise applications
running on mobile devices. OAuth2 is the industry-standard

In this chapter ...

• OAuth2 Authentication
Flow

protocol that allows secure authentication for access to a
user's data, without handing out the username and password.
It is often described as the valet key of software access: a• Creating a Remote Access

Application valet key only allows access to certain features of your car:
you cannot open the trunk or glove compartment using a
valet key.

The Salesforce OAuth2 implementation can quickly and
easily be embedded by mobile app developers. The
implementation uses an HTML view to collect the username
and password, which are then sent to the server. A session
token is returned and securely stored on the device for future
interactions.

23

OAuth2 Authentication Flow
The authentication flow depends on the state of authentication on the device.

First Time Authentication Flow
1. User opens a mobile application.
2. An authentication dialog/window/overlay appears.
3. User enters username and password.
4. App receives session ID.
5. User grants access to the app.
6. App starts.

Ongoing Authentication
1. User opens a mobile application.
2. If the session ID is active, the app starts immediately. If the session ID is stale, the

app uses the refresh token from its initial authorization to get an updated session
ID.

3. App starts.

PIN Code Authentication
1. User opens a mobile application after not using it for some time.
2. If the elapsed time exceeds the configured PIN timeout value, a PIN entry screen

appears. User enters the PIN.

Note: PIN is a function of the mobile policy - it can be shown whether you
are online or offline, if enough time has elapsed since you last used the
application.

3. App re-uses existing session ID.
4. App starts.

OAuth 2.0 User-Agent Flow

The user-agent authentication flow is used by client applications residing on the user's mobile
device. The authentication is based on the user-agent's same-origin policy.

In the user-agent flow, the client application receives the access token in the form of an HTTP
redirection. The client application requests the authorization server to redirect the user-agent
to another web server or local resource accessible to the user-agent, which is capable of extracting

24

Chapter 2: Authentication, Security, and Identity in Mobile Apps

the access token from the response and passing it to the client application. Note that the token
response is provided as a hash (#) fragment on the URL. This is for security, and prevents the
token from being passed to the server, as well as to other servers in referral headers.

This user-agent authentication flow doesn't utilize the client secret since the client executables
reside on the end-user's computer or device, which makes the client secret accessible and
exploitable.

Warning: Because the access token is encoded into the redirection URI, it might be
exposed to the end-user and other applications residing on the computer or device.

If you are authenticating using JavaScript, call to
remove the callback from the browser’s history.

1. The client application directs the user to Salesforce to authenticate and authorize
the application.

25

Authentication, Security, and Identity in Mobile Apps

2. The user must always approve access for this authentication flow. After approving
access, the application receives the callback from Salesforce.

After a consumer has an access token, they can use the access token to access data on the
end-user’s behalf and receive a refresh token to get a new access token if it becomes invalid for
any reason.

OAuth 2.0 Refresh Token Flow

After the consumer has been authorized for access, they can use a refresh token to get a new
access token (session ID.) This is only done after the consumer already has received a refresh
token using either the Web server or user-agent flow. It is up to the consumer to determine
when an access token is no longer valid, and when to apply for a new one. Bearer flows can
only be used after the consumer has received a refresh token.

The following are the steps for the refresh token authentication flow. More detail about each
step follows:

1. The consumer uses the existing refresh token to request a new access token.
2. After the request is verified, Salesforce sends a response to the client.

Scope Parameter Values

The parameter enables you to fine-tune what the client application can access in a
Salesforce organization. The valid values for are:

DescriptionValue

Allows access to the current, logged-in user’s account over the APIs,
such as REST API or Bulk API. This also includes ,
allowing access to Chatter API resources.

Allows access to only the Chatter API resources.

Allows access to all data accessible by the logged-in user. does
not return a refresh token. You must explicitly request the

 scope to get a refresh token.

Allows access only to the identity URL service. See “Using Identity
URLs” in the online help.

Allows a refresh token to be returned if you are eligible to receive one.

26

Chapter 2: Authentication, Security, and Identity in Mobile Apps

DescriptionValue

Allows access to Visualforce pages.

Allows the ability to use the on the Web. This also
includes , allowing access to Visualforce pages.

Using Identity URLs

In addition to the access token, an identity URL is also returned as part of a token response,
in the parameter.

The identity URL is both a string that uniquely identifies a user, as well as a RESTful API
that can be used to query (with a valid access token) for additional information about the user.
Salesforce returns basic personalization information about the user, as well as important
endpoints that the client can talk to, such as photos for the user, and API endpoints it can
access.

The format of the URL is: ,
where is the ID of the Salesforce organization that the user belongs to, and
is the Salesforce user ID.

Note: For Sandbox, is replaced with
.

The URL must always be HTTPS.

Identity URL Parameters
The following parameters can be used with the access token and identity URL. They are used
in an authorization request header or in a request with the parameter. For more
details, see “Using the Access Token” in the online help.

DescriptionParameter

See “Using the Access Token” in the online help.Access token

This parameter is optional. Specify the format of the returned output. Valid
values are:

Format

•
•
•

27

Authentication, Security, and Identity in Mobile Apps

DescriptionParameter

Instead of using the parameter, the client can also specify the
returned format in an accept-request header using one of the following:

•
•
•

Note the following:

• Wildcard accept headers are allowed. is accepted and returns JSON.
• A list of values is also accepted and is checked left-to-right. For example:

returns XML.
• The parameter takes precedence over the accept request header.

This parameter is optional. Specify a SOAP API version number, or the
literal string, . If this value isn’t specified, the returned API URLs

Version

contains the literal value , in place of the version number, for
the client to do string replacement. If the value is specified as , the
most recent API version is used.

This parameter is optional, and is only accepted in a header, not as a URL
parameter. Specify the output to be better formatted. For example, use the

PrettyPrint

following in a header: . If this value isn’t specified, the
returned XML or JSON is optimized for size rather than readability.

This parameter is optional. Specify a valid JavaScript function name. This
parameter is only used when the format is specified as JSON. The output

Callback

is wrapped in this function name (JSONP.) For example, if a request to
 returns , a

request to
returns .

Identity URL Response
After making a valid request, a 302 redirect to an instance URL is returned. That subsequent
request returns the following information in JSON format:

• —The identity URL (the same URL that was queried)
• —A boolean value, indicating whether the specified access token used

was issued for this identity
• —The Salesforce user ID
• —The Salesforce username

28

Chapter 2: Authentication, Security, and Identity in Mobile Apps

• —The Salesforce organization ID
• —The community nickname of the queried user
• —The display name (full name) of the queried user
• —The email address of the queried user
• —The user’s current Chatter status.

◊ : value of the creation date of the last post by the user,
for example, 2010-05-08T05:17:51.000Z

◊ : the body of the post

• —A map of URLs to the user’s profile pictures

Note: Accessing these URLs requires passing an access token. See “Using the
Access Token” in the online help.

◊
◊

• —A map containing various API endpoints that can be used with the specified user.

Note: Accessing the REST endpoints requires passing an access token. See “Using
the Access Token” in the online help.

◊ (SOAP)
◊ (SOAP)
◊ (SOAP)
◊
◊ (Chatter)
◊ (Chatter)
◊ (Chatter)
◊ (Chatter)
◊ —This value is omitted if the organization doesn’t have a custom

domain configured and propagated (see “My Domain Overview” in the online help)

• —A boolean specifying whether the queried user is active
• —The type of the queried user
• —The queried user’s language
• —The queried user’s locale
• —The offset from UTC of the timezone of the queried user, in milliseconds
• — format of last modification of the user, for

example, 2010-06-28T20:54:09.000Z

29

Authentication, Security, and Identity in Mobile Apps

The following is a response in XML format:

30

Chapter 2: Authentication, Security, and Identity in Mobile Apps

The following is a response in JSON format:

After making an invalid request, the following are possible responses from Salesforce:

Error CodeRequest Problem

403 (forbidden) — HTTPS_RequiredHTTP

403 (forbidden) — Missing_OAuth_TokenMissing access token

403 (forbidden) — Bad_OAuth_TokenInvalid access token

403 (forbidden) — Wrong_OrgUsers in a different organization

404 (not found) — Bad_IdInvalid or bad user or organization ID

404 (not found) — InactiveDeactivated user or inactive organization

31

Authentication, Security, and Identity in Mobile Apps

Error CodeRequest Problem

404 (not found) — No_AccessUser lacks proper access to organization
or information

404 (not found) — No_Site_EndpointRequest to the endpoint of a site

406 (not acceptable) — Invalid_VersionInvalid version

406 (not acceptable) — Invalid_CallbackInvalid callback

Revoking OAuth Tokens

When a user logs out of an app, or the app times out or in other ways becomes invalid, the
logged-in users’ credentials are cleared from the mobile app. This effectively ends the connection
to the server, but you can also explicitly revoke the token on the server.

When users request their data from within the external application (the consumer’s page), they
are authenticated. You can revoke their access tokens, or the refresh token and all related access
tokens, using revocation. Developers can use this feature when configuring a Log Out button
in their application.

Revoking Tokens
To revoke OAuth 2.0 tokens, use the revocation endpoint:

Construct a POST request that includes the following parameters using the
 format in the HTTP request entity-body. For

example:

If an access token is included, we invalidate it and revoke the token. If a refresh token is
included, we revoke it as well as any associated access tokens.

The authorization server indicates successful processing of the request by returning an HTTP
status code 200. For all error conditions, a status code 400 is used along with one of the
following error responses.

• —token type not supported

32

Chapter 2: Authentication, Security, and Identity in Mobile Apps

• —the token was invalid

For Sandbox, use instead of .

Creating a Remote Access Application
Before a mobile device can connect with the service, you need to create a remote access
application. The remote access application includes a Consumer Key, a prerequisite to all
development scenarios in this guide.

1. Log into your Database.com or Force.com instance.
2. Navigate to App Setup > Develop > Remote Access.
3. Click New.
4. For , enter a name, such as
5. For , enter

Note: The does not have to be a valid URL; it only has
to match what the app expects in this field. You can use any custom prefix,
such as .

6. For , enter your email address.
7. Click Save.

Tip: The detail page for your remote access configuration displays a consumer key.
It’s a good idea to copy the key, as you'll need it later. Mobile apps do not use
the Consumer Secret, so you can just ignore this value.

33

Authentication, Security, and Identity in Mobile Apps

34

Chapter 2: Authentication, Security, and Identity in Mobile Apps

Chapter 3

Connected Apps

A Connected App is an application that can connect to
salesforce.com over Identity and Data APIs. Connected

In this chapter ...

• Developing and Managing
Connected Apps

Apps use the standard OAuth 2.0 protocol to authenticate,
provide Single Sign-On, and acquire access tokens for use
with Salesforce APIs. In addition to standard OAuth• Developer Tasks
capabilities, Connected Apps add additional levels of control,• Administrator Tasks
allowing administrators explicit control over who may use
the application, and various security policies which should
be enforced.

Connected Apps are enabled in all new Developer Edition
organizations. Existing Developer Edition organizations
and all other Salesforce organizations can request to have
Connected Apps enabled as part of a pilot program.

Note: The Connected Apps feature is currently
available through a pilot program. For information
on enabling it for your organization, contact your
salesforce.com representative. Any unreleased
services or features referenced in this or other press
releases or public statements are not currently
available and might not be delivered on time or at
all. Customers who purchase our services should
make their purchase decisions based upon features
that are currently available.

35

Developing and Managing Connected Apps
Connected Apps begin with a developer defining OAuth metadata about the application,
including:

• Basic descriptive and contact information for the Connected App
• The OAuth scopes and callback URL for the Connected App
• Optional IP ranges where the Connected App might be running
• Optional information about mobile policies the Connected App can enforce

In return, the developer is provided an OAuth client Id and client secret, as well as an install
URL for the Connected App. The developer can then provide this URL to a Salesforce
administrator.

The administrator can install the Connected App into their organization and use profiles,
permission sets, and IP range restrictions to control which users can access the application.
Management is done from a detail page for the Connected App. The administrator can also
uninstall the Connected App and install a newer version. When the app is updated, the
developer can notify administrators that there is a new version available for the app — their
existing installation URL installs the new version.

Developer Tasks
The lifecycle of a Connected App is made up of these steps:

• Creating a Connected App
• Publishing a Connected App
• Deleting a Connected App
• Updating a Connected App

Creating a Connected App

Create a Connected App by doing the following:

1. Click > Setup > Create > Apps.
2. In the Connected Apps section, click New.

36

Chapter 3: Connected Apps

The information required to create a Connected App is divided into these parts:

• Basic Information describes your application, its appearance in the list of available
applications, and how someone can contact you about the application.

• API Integration specifies how your application communicates with Salesforce.
• Mobile Integration specifies PIN length and session timeout values available for mobile

applications.
• IP Ranges are the list of IP addresses that can access the app without requiring the user to

authenticate. You set these after creating the app.

When you’ve finished entering the information, click Save to save your new app. You can now
publish your app, make further edits, or delete it. Saving your app gives you the Consumer
Key and Consumer Secret the app uses to communicate with Salesforce.

Connected App Basic Information

Specify basic information about your app in this section, including the app name, logo, and
contact information.

1. For Connected App Name, enter the name for your application. This name displays
in the list of Connected Apps.

Note: The name must be completely unique in your organization. You can’t
reuse an existing name or the name of a deleted Connected App.

2. In Description, enter an optional description for your application. This also displays
in the list of Connected Apps.

37

Connected Apps

3. Optionally enter the Logo Image URL for your application logo. The URL must
use HTTPS and the logo cannot be larger than 125 pixels high or 200 pixels wide.
The default logo is a cloud.

4. You can optionally enter an Info URL if you have a Web page for more information
about your application.

5. Enter a phone number in Contact Phone for salesforce.com to use in case we need
to contact you. This number is not provided to administrators installing the app.

6. In Contact Email, enter the email address salesforce.com should use for contacting
you or your support team. This address is not provided to administrators installing
the app.

Connected App API Integration

The API Integration section controls how your app communicates with Salesforce.

1. Enter a Callback URL. This is the URL (endpoint) that Salesforce calls back to
your application during OAuth; it’s the OAuth .

2. Check Use Digital Signatures if the app uses a certificate.
3. Pick the Selected OAuth Scopes for your application from the list of available

OAuth scopes. The scopes refer to permissions given by the user running the
Connected App:

• Access and manage your Chatter feed (with the Chatter REST API)
• Access and manage your data
• Access your basic information
• Full access
• Perform requests on your behalf at any time
• Provide access to custom applications
• Provide access to your data via the Web

38

Chapter 3: Connected Apps

If your organization had the
 option selected on your remote access prior to the Spring ’12 release, users

in the same organization as the one the app was created in still have automatic approval for
the app. The read-only

 checkbox is selected to show this condition. For Connected Apps, the
recommended procedure after you’ve created an app is for administrators to install the app and
then set to . If the remote access option was
not checked originally, the checkbox doesn’t display.

Connected App Mobile Integration

If your app is a mobile application, you might wish to enforce policies for Screen Locking and
Pin Protection. These policies are automatically enforced by the Salesforce Mobile SDK
() or you can implement this manually by
reading the object from the user’s Identity URL. If you enforce this,
check Implements Screen Locking & Pin Protection to give an administrator the option of
setting the session timeout and PIN length for mobile applications after installing the Connected
App.

Connected App IP Ranges

After you’ve created the app, you can specify IP ranges by clicking New at IP Ranges. These
IP ranges act as a requested whitelist of acceptable IP addresses that can access the app. Enter
a valid IP address in the Start IP Address field and a higher IP address in the End IP Address
field. You can enter multiple, discontinuous ranges by clicking New to enter each range. Once
the app is installed, each organization’s administrator can approve or bypass the ranges by
setting IP restrictions.

39

Connected Apps

Publishing a Connected App

After creating a Connected App, publish it to make it available to other users. An app that
has never been published appears in the Connected Apps list with Unpublished Changes status.
Clicking the Connected App Name in the list opens the editing page for the app.

You can perform the following tasks:

• Publish creates an installation URL for the app.
• Edit lets you make changes to the app information you specify when creating the app.
• Delete removes the app completely, though the name is remembered and cannot be reused.

When you click Publish, you are asked to confirm that you want to publish the Connected
App. Confirm by clicking Publish. The Version is incremented by 1 and new values are created:

• Installation URL – Administrators use this URL to install the Connected App in their
organizations.

• Consumer Key – A value used by the consumer to identify itself to Salesforce. Referred
to as in OAuth 2.0.

• Consumer Secret – A secret used by the consumer to establish ownership of the consumer
key. Referred to as in OAuth 2.0.

40

Chapter 3: Connected Apps

Note: Any OAuth approvals done for an unpublished Connected App, for example
during testing, will be valid against the first published version as well. The approvals
will not transfer to subsequently published versions.

Deleting a Connected App

To delete a Connected App, click the Connected App Name in the list of apps. Click Delete
on the editing page and confirm by clicking Delete again. Even though the app is removed
from your list, you cannot reuse the app name.

If you delete a Connected App that has been installed in an organization, the organization
administrator still sees the app in the Connected Apps list, but they cannot run the app and
the only action available to them is Remove.

Updating a Connected App

You can update a Connected App at any time. Clicking the Connected App Name in the list
opens the editing page for the app. Click New Version to bring up the edit page where you
can make changes. Save your changes by clicking Save. If you return to the list of Connected
Apps now, you’ll see your app shown with the Unpublished Changes status. Click the app
name and click Publish on the editing screen to publish the app. Publishing the app makes
any earlier version unavailable.

Administrator Tasks
Administrators perform these tasks with Connected Apps:

• Installing a Connected App
• Managing a Connected App
• Uninstalling a Connected App
• Upgrading a Connected App

Installing a Connected App

You install a Connected App with the installation URL provided by the Connected App
developer. The easiest way to install the app in your organization is to log into your Salesforce
organization and then paste the URL into your browser to start the installation process. You’ll

41

Connected Apps

see a confirmation screen with the app name, its description, and information about how to
control user access to the app after it’s installed. Click Install to complete the installation.

If you are logged into more than one Salesforce organization, the installation will select one.
Check the username shown in the upper right corner to make sure that the app will be installed
in the correct organization. If the username shown isn’t the correct one, click Not you? to log
out and stop the installation.

If any version of the Connected App is already installed in your organization you’ll see an error
message telling you this. Uninstall your current version and then install the new version.

After installing a Connected App, you’re shown the detail page for the app. You can edit the
app policies from this page.

Managing a Connected App

Connected Apps are managed through the editing page. You can find your app under
 > Setup > Manage Apps > Connected Apps. You can edit, uninstall, and review

information about the app from this page.

• Click to make changes to the app on the Edit page.

 are available for every Connected App.

◊ determines who can run the app.

- , the default, allows anyone in the organization to self-authorize the
app. This means each user has to approve the app the first time they access it. If you
switch from to , anyone currently using the
app loses their access unless they belong to a permission set you have specified for
the app.

- limits access to those users with the permission set or
sets specified, but these users don’t need to approve the app before they can access
it. You manage permission sets for the app from the Detail page.

◊ refers to the IP restrictions that the users of this Connected App
are subject to. An administrator can choose to either enforce or bypass these restrictions
by choosing one of the following options.

- – Default. A user running this app is subject to the
organization’s IP restrictions, such as IP ranges set in the user’s profile.

- – A user running this app
bypasses the organization’s IP restrictions if either of these conditions are true:

- The app has IP ranges whitelisted and is using the Web server OAuth
authentication flow. Only requests coming from the whitelisted IPs are allowed.

42

Chapter 3: Connected Apps

- The app has no IP range whitelist, is using the Web server or user-agent OAuth
authentication flow, and the user successfully completes Identity Confirmation.

- – A user running this app is not subject to any IP
restrictions.

◊ is used if the Connected App uses single sign-on. In this case, set the URL
to the page the user goes to to start the authentication process.

This location will also appear in the application switcher menu.

◊ settings are available for any Connected App that’s a mobile
application.

- specifies how much time can pass while the app is idle before
the app locks itself and requires the PIN before continuing. Allowable values are 1,
5, 10, and 30 minutes.

- sets the length of the identification number sent for authentication
confirmation. The length can be from 4 to 8 digits, inclusive.

43

Connected Apps

• Uninstall the Connected App by clicking . Click to confirm the
uninstallation. You have to uninstall an app before you can install a new version.

• Click the app’s name to review the Connected App on the Detail page. You can click
or from this page to make changes after reviewing the app. This is also where
you assign profiles and permission sets to the app.

◊ Click to select the permission sets for the profiles for
this app from the Application Permission Set Assignment page. Select the permission
sets to have access to the app.

◊ Click to select the profiles for this app from the Application Profile
Assignment page. Select the profiles to have access to the app.

Only the users belonging to at least one of the selected profiles or permission sets can run
the app if you have selected for the value.
If you selected instead, profiles and permission sets are ignored.

• If the app has been deleted by its developer, is the only action available, and removes
the app from the list.

44

Chapter 3: Connected Apps

About PIN Security

Mobile Connected Apps have an additional layer of security via PIN protection on the app.
This PIN protection is for the mobile app itself, and isn’t the same as the PIN protection on
the device or the login security provided by the Salesforce organization.

In order to use PIN protection, the developer must select the Implements Screen Locking &
Pin Protection checkbox when creating the Connected App. Mobile app administrators then
have the option of enforcing PIN protection and customizing timeout duration and PIN length.

Note: Because PIN security is implemented in the mobile device’s operating system,
only native and hybrid mobile apps can use PIN protection; HTML5 Web apps can’t
use PIN protection.

In practice, PIN protection can be used so that the mobile app locks up if it isn’t used for a
specified number of minutes. Note that when a mobile app is sent to the background, the clock
continues to tick.

To illustrate how PIN protection works:

1. User turns on phone and enters PIN for the device.
2. User starts mobile app (Connected App).
3. User enters login information for Salesforce organization.
4. User enters PIN code for mobile app.
5. User works in the app, and then sends it to the background by opening another app

(or receiving a call, etc).
6. The mobile app times out.
7. User re-opens the app, and the app PIN screen displays (for the mobile app, not the

device).
8. User enters app PIN, and can resume working.

Uninstalling a Connected App

Uninstall a Connected App by clicking Uninstall next to the app name at >
Setup > Manage Apps > Connected Apps. Click OK in the confirmation window.

Note: When a Connected App is uninstalled, the access and refresh tokens of all users
of the application are removed. This prevents a user from running the application
later, using an existing access token, without explicitly approving the application
themselves.

45

Connected Apps

Upgrading a Connected App

When a new version becomes available for an installed Connected App, you must uninstall
the current version before you can install the new one. Use the same Installation URL you
used previously to install the app.

Connected App Error Codes

A user might see the following error code when trying to use a Connected App.

NotesErrorFault
Code

The user doesn’t have administrator approval to
access this Connected App.

APP_ACCESS_DENIED1805

46

Chapter 3: Connected Apps

Chapter 4

Native iOS Development

The two main things the iOS native SDK provides:In this chapter ...

• Automate the OAuth2 login process and make it easy
to integrate this with your app.

• iOS Native Quick Start
• Using the Mobile SDK in

an Existing Project • Access to the REST API with all the infrastructure
classes (including third-party libraries such as RestKit)
for making that access as easy as possible.• iOS RestAPIExplorer

Sample Application
When you create a new project using the Salesforce Mobile
SDK, a template application is included automatically. This
simple app allows you to connect to a organization and run
a simple query. It doesn’t do much, but it lets you know
things are working as designed, and gives you the foundation
of your own app.

47

iOS Native Quick Start
Use the following procedure to get started quickly.

1. Make sure you meet all of the native iOS requirements.
2. Install the Mobile SDK for iOS.
3. Run the template app.

Native iOS Requirements

• XCode—4.0 is the minimum, we recommend the latest version.
• iOS 4.3 (soon 5.0)
• Install the Mobile SDK.
• A Developer Edition organization with a remote access application.

Installing the Mobile SDK for iOS

1. In your browser, navigate to the Mobile SDK iOS GitHub repository:
.

2. Clone the repository to your local file system by issuing the following command:

Note: If you have the GitHub app for Mac OS X, click Clone in Mac.

3. Open the OS X Terminal app in the directory where you installed the cloned
repository and run the install script from the command line:

4. You also need to download the sample app from GitHub:

Creating a New Native iOS App in Xcode

Use the following procedure to create and configure a new Force.com–based Application
project.

1. Open Xcode and create a new project (Shift-Command-N).

48

Chapter 4: Native iOS Development

2. Select Native Force.com REST App and click Next.
3. In the dialog, enter

.

Note: You might also need to enter a Company Identifier prefix if you
haven’t used Xcode before.

4. Make sure the checkbox for Use Automatic Reference Counting is cleared.

5. Click Next.
6. Specify a location for your new project and click Create.

Running the Xcode Project Template App

The Xcode project template includes a sample application you can run right away.

1. Press Command-R and the default template app builds and then runs in the iOS
simulator.

Note: If you get build errors, make sure Automatic Reference Counting
(ARC) is turned off.

a. Select your project in the Navigator.
b. In the Build Settings tab, toggle the

 value to .

2. On startup, the application starts the OAuth authentication flow, which results in
an authentication page. Enter your credentials, and click Login.

3. Tap Allow when asked for permission

You should now be able to compile and run the sample project. It's a simple app that logs you
into an org via OAuth2, issues a query, and displays the result
in a .

49

Native iOS Development

Using the Mobile SDK in an Existing Project
If you want to incorporate the Mobile SDK into an existing iOS project, do the following.

1. In Xcode, drag the folder into your project (select Create
groups for any added folders).

2. Open the Build Settings tab for the project and set
 to .

3. Open the Build Phases tab for the project main target and link against the following
required frameworks:

•
•
•
•
•
•

4. Import the header via .
5. Build the project to verify that the installation is successful.
6. Refer to the SFRestAPI documentation for some sample code to log into a Salesforce

instance and issue a REST API call.

iOS RestAPIExplorer Sample Application
The Xcode Project Template is itself a sample application, but it only does one thing: issue a
SOQL query and return a result. The RestAPIExplorer sample app has a lot more functionality
you can examine and work into your own apps.

The RestAPIExplorer sample app is in the Mobile SDK for iOS under
.

50

Chapter 4: Native iOS Development

http://forcedotcom.github.com/MobileContainer-iOS/Documentation/SalesforceSDK/Classes/SFRestAPI.html

Chapter 5

Native Android Development

The two main things the Android native SDK provides are:In this chapter ...

• Automation of the OAuth2 login process, making it easy
to integrate the process with your app.

• Android Native Quick
Start

• Access to the REST API, with infrastructure classes that
simplify that access.

• Setting Up Projects in
Eclipse

• Cleaning and Building
From Eclipse

The Android Salesforce Mobile SDK includes several sample
native applications. We also provide an ant target to quickly
create a new application.• Android RestExplorer

Sample Application

51

Android Native Quick Start
Use the following procedure to get started quickly.

1. Make sure you meet all of the native Android requirements.
2. Install the Mobile SDK for Android.
3. At the command line, run an ant script to create a new Android project , and then

run the template application from the command line.

Native Android Requirements

• Java JDK 6.
• Apache Ant 1.8 or later.
• Android SDK, version 20 or

later— .

Note: For best results, install all previous versions of the Android SDK as well as
your target version.

• Eclipse 3.6 or later. See
for other versions.

• Android ADT (Android Development Tools) plugin for Eclipse, version 20 or
later— .

• In order to run the application in the Emulator, you need to set up at least one Android
Virtual Device (AVD) that targets Platform 2.2 or above (we recommend 2.2). To learn
how to set up an AVD in Eclipse, follow the instructions at

.
• A Developer Edition organization with a remote access application.

The project is built with the Android 3.0 (Honeycomb) library. The primary
reason for this is that we want to be able to make a conditional check at runtime for file system
encryption capabilities. This check is bypassed on earlier Android platforms; thus, you can still
use the in earlier Android application versions, down to the
mininum-supported Android 2.2.

52

Chapter 5: Native Android Development

http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/eclipse-adt.html#installing
http://developer.android.com/guide/developing/devices/managing-avds.html

Installing the Mobile SDK for Android

1. In your browser, navigate to the Mobile SDK Android GitHub repository:
https://github.com/forcedotcom/SalesforceMobileSDK-Android.

2. Clone the repository to your local file system by issuing the following command:

3. Open a command prompt in the directory where you installed the cloned repository,
and run the install script from the command line:

Note: Windows users run .

Create shell variables:

1. pointing to the Android SDK directory
2. pointing to your clone of the Salesforce Mobile SDK

repository, for example: .
3. pointing to
4. pointing to a location you’ve defined to contain your Android project.

Note: If you haven't set up these variables, make sure to replace
 and in the various code

snippets in this guide with the actual paths.

Creating a New Android Project

We’ve made it easy to create a native Android project by using an ant script. You’ll need to
provide the following parameters when you run the script.

• — the name for the new application
• — the directory where the code should reside (the same as if

you defined that environment variable)
• — the Java package for the new application, for example,

.

To create a native Android project:

1. Open a command prompt in the location where you installed the SDK (or
 if you created that variable).

53

Native Android Development

https://github.com/forcedotcom/SalesforceMobileSDK-Android

2. Enter

The Android project contains a simple application you can build and run.

Android Template Application

The template native app for Android allows you to login and do standard CRM tasks, such
as queries and inserts.

To build the new application, do the following:

1. In a text editor, open .
2. Enter your OAuth client ID and callback URL, and then save the file.
3. Open a command prompt and enter the following commands:

Note: The parameter specifies Android 11 as the target Android
version. For a list of target IDs, use .

4. If your emulator is not running, use the Android AVD Manager to start it. If you
are using a real device, connect it.

5. Enter .

Setting Up Projects in Eclipse
The repository you cloned has other sample apps you can run. To import those into Eclipse:

1. Launch Eclipse and select as your workspace directory.
2. Select Window > Preferences, choose the Android section, and enter the the

Android SDK location.
3. Click OK.
4. Select File > Import and select General > Existing Projects into Workspace.
5. Click Next.
6. Select as your root directory and import the projects listed in Android

Project Files.

54

Chapter 5: Native Android Development

7. In the navigator, right-click SalesforceSDKTest, choose New > Folder, and set the
folder name to . If the folder already exists, click Cancel.

8. In the same way, create a folder for and
projects.

9. Right–click the project and create a folder called .

Android Project Files

Inside the $NATIVE_DIR, you will find several projects:

1. —The SalesforceSDK, which provides support for OAuth2 and
REST API calls

2. —Tests for the SalesforceSDK project
3. — Template used when creating new native applications using

SalesforceSDK
4. — Tests for the Templateapp project.
5. — App using SalesforceSDK to explore the REST API calls
6. —Tests for the RestExplorer project
7. — A sample native application using SalesforceSDK,

used in the Mobile SDK Workbook

Cleaning and Building From Eclipse
Depending on the Android SDK Tools version you use, you might experience problems around
cleaning your workspace (Project > Clean). Specifically, projects that are dependent on Android
Library projects might not properly follow the build dependency ordering, so when every
project is cleaned, dependent projects do not pick up the existence of the Library project. The
result is that all of the non-Library projects will have build errors after a clean.

If you would like to rebuild everything, we recommend cleaning/rebuilding the Library
() project by itself first, followed by cleaning and rebuilding the dependent
projects.

55

Native Android Development

Android RestExplorer Sample Application
The RestExplorer is a sample app that demonstrates how to use the OAuth and REST API
functions of the SalesforceSDK. It is also useful to investigate the various REST API actions
from a Honeycomb tablet.

1. To run the application, right-click the RestExplorer project and choose Run As >
Android Application.

2. To run the tests, right-click the RestExplorerTest project and choose Run As >
Android JUnit Test.

56

Chapter 5: Native Android Development

Chapter 6

Hybrid Development

Hybrid apps combine the ease of HTML5 Web app
development with the power and features of the native
platform.

In this chapter ...

• Hybrid Apps Quick Start
• Create a Mobile Page to

List Information Hybrid apps depend on HTML and JavaScript files. These
files can be stored on the device or on the server.• Create a Mobile Page for

Detailed Information • Device — Hybrid apps developed with
JavaScript library wrap a Web app inside the Salesforce• Support Social

Collaboration with
Chatter

Mobile Container. In this methodology, the JavaScript
and HTML files are stored on the device.

• Salesforce Mobile Container — Hybrid apps developed
using Visualforce technology store the HTML and

• iOS Hybrid Sample
Application

JavaScript files on the server and are delivered through
the native container.

• Android Hybrid Sample
Application

57

Hybrid Apps Quick Start
Use the following procedure to get started quickly.

1. Make sure you meet all of the Hybrid Apps Requirements on page 58.
2. Install the Mobile SDK.

• Installing the Mobile SDK for iOS on page 48
• Installing the Mobile SDK for Android on page 53

3. Create a Remote Access Application on page 33.

Note: When filling in the details for the Callback URL:

• For iOS use

• For Android use ,
where is specific to your application

4. Run the Sample App on page 60.

When you’re done with the sample app you can add more functionality.

1. Create a Mobile Page to List Information on page 64
2. Create a Mobile Page for Detailed Information on page 68
3. Customize the Hybrid Sample App to Use the Camera on page 118

Hybrid Apps Requirements

For all target devices, you will need:

• Ant 1.8.0 or later
• Git - see these helpful instructions http://help.github.com/set-up-git-redirect.

If you are developing apps for iOS devices, you will also need Xcode 4.2 or above.

If you are developing apps for Android devices, you will also need:

• Eclipse Classic
• Android SDK (r20 or above)
• ADT Plugin (r20 or above)

58

Chapter 6: Hybrid Development

http://ant.apache.org/manual/install.html
http://help.github.com/set-up-git-redirect
https://developer.apple.com/xcode/
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html#installing

Creating a Hybrid App Project for iOS

To create a new project:

1. In Xcode, create a new "Hybrid Force.com App" project (Command-Shift-N in
Xcode). These parameters are required.

• Consumer Public Key: The Consumer Key from your Remote Access app.
• OAuth Redirect URL: The Callback URL from your Remote Access app.
• Company Identifier: Something like com.mycompany.foo - this should

correspond with an App ID you created in your Apple iOS dev center account.
• Use Automatic Reference Counting: Uncheck.

At the time of writing, there is a bug in the Hybrid Force.com App template that causes the
app to be incorrectly packaged. If you try to run the app, it will fail with "ERROR: Start Page
at 'www/bootstrap.html' was not found" in the output console in Xcode.

To fix this:

1. Right-click the yellow folder and delete it by clicking Delete, Remove
References Only.

2. Right-click your project folder, select Add Files to "My Project" and navigate to the
www directory inside the project directory.

3. Ensure that Create folder references for any added folders is selected, then click
Add. Notice that the www folder is now shown in blue.

59

Hybrid Development

Now the app will run correctly.

Creating a Hybrid Project for Android

To create the project:

1. In Eclipse, select File > Import > General > Existing Projects into Workspace.
2. Locate the sample ContactExplorer project:

 and
select it as the root directory. Ensure that Copy projects into workspace is selected,
and click Finish.

3. To avoid confusion with the standard ContactExplorer sample, right-click the
ContactExplorer project and rename it. Open , and
edit to match the new project name.

4. To configure your app with its Remote Access parameters,
open and edit the following values:

• : The Consumer Key from your Remote Access
app.

• : The Callback URL from your Remote Access app.

5. You will need to create an Android Virtual Device, if you have not already done so.
In Eclipse, select Window > AVD Manager and click New. You can enable camera
support in the device if you wish.

Running the Sample Hybrid App

You should now be able to compile and run the sample project, either on the simulator or a
physical device. In both environments, you can select either a connected physical device or a

60

Chapter 6: Hybrid Development

simulator on which to run the app. If you’re using an iOS device, you must configure a profile as
described in the Xcode 4 User Guide. Similarly, Android devices must be set up as described
in the Android developer documentation.

Whichever way you run the app, after showing an initial 'splash screen', you should see the
Salesforce login screen.

Log in with your DE username and password, and you will be prompted to allow your app
access to your data in Salesforce.

61

Hybrid Development

http://developer.apple.com/library/mac/#documentation/ToolsLanguages/Conceptual/Xcode4UserGuide/Devices/Devices.html
http://developer.apple.com/library/mac/#documentation/ToolsLanguages/Conceptual/Xcode4UserGuide/Devices/Devices.html
http://developer.android.com/guide/developing/device.html
http://developer.android.com/guide/developing/device.html

Tap Allow and you should be able to retrieve lists of contacts and accounts from your DE
account.

Tap to retrieve Contact and Account records from your DE account.

Notice the app can also retrieve contacts from the device - something that an equivalent web
app would be unable to do. Let's take a closer look at how the app can do this.

62

Chapter 6: Hybrid Development

How the Sample App Works

After completing the login process, the sample app displays (located in
the www folder). When the page has completed loading and the mobile framework is ready,
the function calls (in).

 sets up five click handlers for the various functions in the sample
app.

This handler calls on the object to retrieve the contact list
from the device. The function renders the contact list into
the page.

The handler runs a query using the object.
This object is set up during the initial OAuth 2.0 interaction, and gives access to the Force.com
REST API in the context of the authenticated user. Here we retrieve the names of all the
contacts in the DE account and renders them as a list on
the page.

The handler is very similar to the previous one, fetching
Account records via the Force.com REST API. The remaining handlers,
and , clear the displayed lists and log out the user respectively.

63

Hybrid Development

Create a Mobile Page to List Information
The sample hybrid app is useful in many respects, and serves as a good starting point to learn
hybrid mobile app development. In this tutorial, you modify the sample hybrid mobile app to
display Merchandise records in the custom Warehouse app schema.

You can build the Warehouse schema quickly using the getting started content online:
.

Modify the App's Initialization Block (index.html)
In this section, you modify the view file () and the controller () to
make the app specific to the Warehouse schema and display all records in the Merchandise
custom object.

In your app, you want a list of Merchandise records to appear on the default Home page of
the mobile app. Consequently, the first thing to do is to modify what happens automatically
when the app calls the function. Add the following code to the tail end of
the sample function in .

Notice that this JavaScript code leverages the library to query the Force.com database
with a basic SOQL statement and retrieve all records from the Merchandise custom object.
On success, the function calls the JavaScript function (which
you build in a moment).

Create the App's mainpage View (index.html)
To display the Merchandise records in a standard mobile, touch-oriented user interface, scroll
down in and replace the entire tag with the following HTML.

64

Chapter 6: Hybrid Development

http://wiki.developerforce.com/page/Developing_Cloud_Apps_%E2%80%94_Coding_Optional

Overall, notice that the updated view uses standard HTML tags and jQuery Mobile markup
(e.g., data-role, data-theme, data-icon) to format an attractive touch interface for your app.
Developing hybrid-based mobile apps is straightforward if you already know some basic standard
Web development technology, such as HTML, CSS, JavaScript, and jQuery.

Modify the App's Controller (inline.js)
In the previous section, the initialization block in the view defers to the

 function of the controller to dynamically generate the HTML
that renders Merchandise list items in the encompassing div, . In
this step, you build the function.

Load the file and add the following controller action, which is somewhat similar
to the sample functions.

65

Hybrid Development

The comments in the code explain each line. Notice the call to
 the JavaScript outputs rendered HTML to the console

log so that you can see what the code creates. Here's an excerpt of some sample output.

66

Chapter 6: Hybrid Development

In particular, notice how the code:

• creates a list of Merchandise records for display on the app's primary page
• creates each list item to display the Name of the Merchandise record
• creates each list item with unique link information that determines what the target detail

page displays

Test the New App
Restart the simulator for your mobile app. When you do, the initial page should look similar
to the following screen.

67

Hybrid Development

If you click any particular Merchandise record, nothing happens yet. The list functionality is
useful, but even better when paired with the detail view. The next section helps you build
the detailpage that displays when a user clicks a specific Merchandise record.

Create a Mobile Page for Detailed Information
In the previous topic, you modified the sample hybrid app so that, after it starts, it lists all
Merchandise records and provides links to detail pages. In this topic, you finish the job by
creating a detailpage view and updating the app's controller.

Create the App's detailpage View (index.html)
When a user clicks on a Merchandise record in the app's mainpage view, click listeners are in
place to generate record-specific information and then load a view named detailpage that displays
this information. To create the detailpage view, add the following div tag after the mainpage div
tag.

68

Chapter 6: Hybrid Development

The comments explain each part of the HTML. Basically, the view is a form that lets the user
see a Merchandise record's Price and Quantity fields, and optionally update the record's
Quantity.

Recall, the jQuery calls in the last part of the function (in
) and updates the detail page elements with values from the target Merchandise

record. Review that code, if necessary.

Modify the App's Controller ()
What happens when a user clicks the Update button in the new detailpage view? Nothing, yet.
You need to modify the app's controller () to handle clicks on that button.

In , add the following JavaScript to the tail end of the
function.

69

Hybrid Development

The comments in the code explain each line. On success, the new handler calls
the function, which is not currently in place. Add the following simple
function to inline.js.

Test the App
Restart the simulator for your mobile app. When you do, a detail page should appear when
you click a specific Merchandise record and look similar to the following screen.

Feel free to update a record's quantity, and then check that you see the same quantity when
you log into your DE org and view the record using the Force.com app UI (see above).

Support Social Collaboration with Chatter
From a developer's perspective, Chatter is a data model that includes several standard Force.com
objects that manage social data for records in your org.

70

Chapter 6: Hybrid Development

• Feed Item: Each feed item represents either a set of changes on a specific record or a post
to a particular user or record. When a user posts to a feed, the ParentId of the resulting
feed item holds the user's UserId. Some queries and statements, for example adding a
comment, require the ID of a feed item.

• FeedComment: A FeedComment object stores comments and is a child object of an
associated record feed item.

To access the Chatter data model, an app can use the Chatter REST API. The Chatter REST
API provides access to Chatter feeds and social data such as feed items and comments via a
standard JSON/XML-based API.

A full discussion of the Chatter REST API is beyond the scope of this topic. For a quick
preview, see the Chatter REST API Cheat Sheet:

.

Modify the App's View (index.html)

To begin modifying your app, start by adding a new mobile page, , to the app's
view, in . Go to https://gist.github.com/3644284 for the source code.

71

Hybrid Development

https://gist.github.com/3644284

Modify the App's Controller (inline.js)

The forcetk library, part of the Mobile SDK, is a wrapper around the Force.com REST API.
However, at the time of this writing, it does not yet include suppport for the Chatter REST
API. Therefore, the first modification necessary to your app's controller is to supplement the

 object with three new functions. Prepend with the following
snippet. Go to https://gist.github.com/3644304 for the source code.

72

Chapter 6: Hybrid Development

https://gist.github.com/3644304

Notice that these new functions call the Chatter REST API to get a feed's items (and all related
posts and comments), post a new item to a feed, and post a new comment for an existing feed
item.

Now append the following code to the function to listen for
clicks on a new button that you will soon add to the . Go to
https://gist.github.com/3644348 for the source code.

Notice that the new code above calls the new forcetkClient
function. This call gets the feed items for the current Merchandise record, including related
posts and comments with just one call to the database, making this function very efficient: an
important design goal for mobile apps. This function call also yields to the

 function, which you need to add next along with a
related .

Add the following code to to add the two new functions. Go to
https://gist.github.com/3644332 for the source code.

73

Hybrid Development

https://gist.github.com/3644348
https://gist.github.com/3644332

74

Chapter 6: Hybrid Development

Try Out the App

Now that the app's view and controller have been updated to support Chatter, try out the app
and test it out. Rebuild the app, and run it in your IDE's simulator. Then click into a
Merchandise record that you know has some Chatter feed items associated with it (use the
Warehouse app in your browser if you need to find such a record). On the detailpage of the
mobile app, tap the new Collaborate button.

Tapping Collaborate takes you to the new chatterpage view of the mobile app, which displays
all the Chatter feed items, including related posts and comments. Feel free to add both a new
post or comment on an existing post and see that your work is reflected in the Warehouse app.

75

Hybrid Development

You've successfully made your mobile app social such that users can collaborate on Merchandise
records!

iOS Hybrid Sample Application
The sample applications contained under the hybrid/ folder are designed around the PhoneGap
SDK. Before you can work with those applications, you need to download and install the
PhoneGap SDK, which you can get from the PhoneGap website. You can find more detailed
installation instructions, as well as documentation for working with the PhoneGap SDK, in
the Getting Started Guide.

The hybrid sample applications are configured to look for the PhoneGap iOS Framework in
, and might not load

the framework properly if it is located elsewhere. To find out if the PhoneGap framework is
properly linked in the sample project, take the following action:

1. Open the project in XCode.
2. In Project Navigator, expand the Frameworks folder.
3. If PhoneGap.framework is listed among the configured frameworks, your project

should be fine, and no further action is necessary.

If you do not see the PhoneGap framework, or otherwise get compilation errors related to the
PhoneGap Framework not being found (e.g. Undefined symbols for architecture i386:
"_OBJC_METACLASS_$_PhoneGapDelegate"), you will need to add the PhoneGap
Framework to the sample project:

76

Chapter 6: Hybrid Development

http://www.phonegap.com/
http://www.phonegap.com/
http://www.phonegap.com/start

1. Open the Xcode project of the sample application.
2. In the Project Navigator, right-click or control-click the Frameworks folder, and

select Add files to "Project Name...".
3. Navigate to the folder (the default location is

), and click
Add.

The sample application project should now build and run cleanly.

Android Hybrid Sample Application
Inside the , you will find several projects:

• SampleApps/ContactExplorer: The sample app uses PhoneGap
(aka "callback") to retrieve local device contacts. It also uses the toolkit to
implement REST transactions with the Salesforce REST API. The app uses the OAuth2
support in Salesforce SDK to obtain OAuth credentials, then propagates those credentials
to by sending a javascript event.

• SampleApps/VFConnector: The VFConnector sample app demonstrates how to wrap a
Visualforce page in a native container. This example assumes that your org has a Visualforce
page called . The app first obtains OAuth login credentials using the
Salesforce SDK OAuth2 support, then uses those credentials to set appropriate webview
cookies for accessing Visualforce pages.

• SmartStorePluginTest: Tests for the SmartStore phonegap plugin.

The sample applications contained under the hybrid/ folder are designed around the PhoneGap
SDK. Before you can work with those applications, you need to download and install
the (or later) version of the PhoneGap SDK, which you can get from the PhoneGap
website. You can find more detailed installation instructions, as well as documentation for
working with the PhoneGap SDK, in the Getting Started Guide.

The hybrid sample applications are configured to look for the PhoneGap Android Framework
in /Users/Shared/PhoneGap/Frameworks/PhoneGap.framework, and might not load the
framework properly if it is located elsewhere. To find out if the PhoneGap framework is
properly linked in the sample project, take the following action:

1. Open the project in Eclipse.
2. In Project Navigator, expand the project folder.
3. If PhoneGap.framework is listed among the configured frameworks, your project

should be fine, and no further action is necessary.

77

Hybrid Development

http://www.phonegap.com/
http://www.phonegap.com/
http://www.phonegap.com/start

If you do not see the PhoneGap framework, or otherwise get compilation errors related to the
PhoneGap Framework not being found (for example, 'Undefined symbols for architecture
i386: "_OBJC_METACLASS_$_PhoneGapDelegate"'), you will need to add the PhoneGap
Framework to the sample project.

1. Open the project of the sample application.
2. In the Project Navigator, right-click or control-click the Frameworks folder, and

select Add files to "Project Name...".
3. Navigate to the PhoneGap.framework folder (the default location is

/Users/Shared/PhoneGap/Frameworks/PhoneGap.framework/), and click Add.

The sample application project should now build and run cleanly.

78

Chapter 6: Hybrid Development

Chapter 7

Hybrid Development with Mobile
Components for Visualforce

The flexible component infrastructure of Visualforce makes
it possible to wrap low-level code into reusable components

In this chapter ...

• Mobile Components for
VisualforceArchitecture

for developing custom apps on the Force.com platform. You
can leverage Visualforce to create hybrid mobile applications.

• Visualforce Mobile Open
Components The open-source Mobile Components for Visualforce library

contains lightweight UI components that generate• Installing the Components
cross-platform HTML5 output. These apps can be deployed

• Creating Your First Tablet
Page

in the browser or embedded inside the hybrid Mobile SDK
container. The source code for this library is available on

• Creating a Mobile
Component for
Visualforce

Github:

The component library enables any Visualforce developer
to quickly and easily build mobile applications without
having to dig deep into complex mobile frameworks and
design patterns. This library includes the frameworks and
best practices of mobile development that can be used with
simple component interfaces.

79

Mobile Components for VisualforceArchitecture
The following image gives you a quick overview of the architecture of Mobile Components
for Visualforce.

Visualforce Mobile Open Components
The Visualforce library consists of the following components:

• App Component — This component provides all the settings and architecture pieces
(including jQuery and jQuery Mobile) for mobile app development.

• Navigation Component — Navigation Component can be used to create hooks for
navigation between various jQuery Mobile pages.

• SplitView Template — This template provides the split view components on the page. In
landscape mode, it provides a left menu section and a broad main section. In portrait mode,
it turns the left menu into a popover.

• List Component — List Component provides a quick and easy way to render a record list
for any sObject. One can easily manage the behavior of the component by using the various
attributes or the JavaScript hooks, on this component.

80

Chapter 7: Hybrid Development with Mobile Components for Visualforce

• Detail Component — Detail Component provides a quick and easy way to render the
details for any sObject. One can easily manage the behavior by using the various attributes
or the JavaScript hooks.

• Page Component — Page Component provides a jQuery Mobile wrapper with
.

• Header Component — Header Component provides a jQuery Mobile wrapper with
 for header sections inside a Page component.

• Content Component — Content Component provides a jQuery Mobile wrapper with
 for content sections inside a Page component.

• Footer Component — Footer Component provides a jQuery Mobile wrapper with
 for footer sections inside a Page component.

Note: These Visualforce components are open-source and are not officially supported
by Salesforce.

Visualforce App Component

All mobile Visualforce pages built using this component library need to be wrapped inside the
App component. The App component provides the primary architectural pieces, such as
viewport settings, javascripts, stylesheets etc., for the mobile app. The attribute on App
components lets you specify if you are running in development or production mode, and delivers
the minified version of assets for the latter case.

Visualforce Navigation Component

The navigation component provides a way to create hooks for navigation between various
jQuery Mobile pages.

Visualforce SplitView Template

The SplitViewTemplate is used inside the App component. The split view page provides a
slim left section for list view, and a wider right section to show the record details.

SplitViewTemplate consists of two sections you need to define.

81

Hybrid Development with Mobile Components for Visualforce

• is the left section of the split view in landscape mode. This section becomes a
popover when a user rotates the tablet to switch to the portrait mode.

• is the right wide section of the split view. This section is always visible on the
tablet in both portrait and landscape modes.

Visualforce Page Component

The Page component provides an important wrapper to define the fixed header and footer
components with a scrollable content section in between.

• The Header component is used to define the fixed title of the section.
• The Content component describes the scrollable content section.
• Within the body of Content component, the List component is used to fetch and display

the contact list.

Visualforce Header Component

Provides a jQuery Mobile wrapper with for header sections inside a
Page component. Header components often include a <H1> tag. The header and footer
components are fixed, and scrollable content can go between them.

Visualforce Content Component

The Content component describes the scrollable content section, including the List and Detail
components.

Within the Content component, the List and Detail components respect the Object, Field,
and Record visibility settings so you can develop the applications using these components
without worrying about data security. Also, one can easily override the CSS styles of these

82

Chapter 7: Hybrid Development with Mobile Components for Visualforce

components to give it a look and feel as required by your project. If you have used jQuery
mobile, you can easily see that the page, header, footer, and content components actually use
the jQuery mobile properties to enable the mobile user experience. So, while using this
component library, you can easily leverage other features of jQuery mobile too.

Visualforce List Component

The List component is used to fetch and display records. The sObject attribute on List
component is used to specify the sObject type for which the list view needs to be created. Other
attributes, such as labelField, subLabelField, sortByField, and listFilter, are used to specify the
behavior and display properties of this list.

Visualforce Detail Component

The Detail component takes the sObject type as an attribute and generates the mobile layout
with details of the associated record. The mobile layout of the record is driven by the Page
layout associated to the current user profile and associated record type. This gives the
administrator the flexibility to update the mobile layout by using the standard Salesforce page
layout manager without further code modifications.

Visualforce Footer Component

Provides a jQuery Mobile wrapper with for header sections inside a
Page component. The header and footer components are fixed, and scrollable content can go
between them.

83

Hybrid Development with Mobile Components for Visualforce

Installing the Components
Before you can start using the components you need to Install the package of components and
enable the remote access points.

1. Grab the source code from git

Next you’ll need to deploy the Force.com metadata found in
the folder to your destination org with Force.com
Workbench using following steps:

1. Create a ZIP archive of .
2. Navigate to the Workbench: .
3. Log in using your salesforce.com credentials and confirm that Workbench may access

your data.
4. Click Migration > Deploy.
5. Click Choose File (or Browse, depending on your browser), and select the ZIP

archive file created above.
6. Enable Rollback on Error.
7. Click Next and then Deploy.

Finally you need to configure a remote access point in your Salesforce org,

1. Log into your org and cick Setup > Administration Setup > Security Controls >
Remote Site Settings.

2. Click New Remote Site, then create a new site by specifying your org's instance
URL for the Remote Site URL. For example, if your org is on instance NA1, the
Remote Site URL will be .

You should now be all set and ready to use Mobile Components for Visualforce. To see the
sample Contact viewer app in action, navigate to the following page:

84

Chapter 7: Hybrid Development with Mobile Components for Visualforce

Creating Your First Tablet Page
Mobile Components for Visualforce includes a couple of sample Visualforce pages (MobilePage
and MobilePageWithComponents) that demonstrate how to use the components for a tablet
application.

Now take a look at the MobilePage and see how it is built for a tablet to display the list of
Contacts and related details. All mobile Visualforce pages built using Mobile Components for
Visualforce need to be wrapped inside the component. The component provides the
primary architectural pieces, such as viewport settings, JavaScripts, style sheets, etc., for the
mobile app. The attribute of an component let’s you specify whether the app is
running in development or production mode and whether to deliver the minified version of
assets for the later case.

85

Hybrid Development with Mobile Components for Visualforce

Inside the component, you can specify the body of the mobile app. In this case, you build
a split view page, which provides a slim left section for list view, and a wider right section to
show the record details. To do this, you compose the page by using the

 which is part of this component library.

 consists of two sections that you need to define.

• menu — The left section of the split view in landscape mode. This section becomes a
popover when user rotates the tablet to switch to the portrait mode.

• main — The right, wide section of the split view. This section is always visible on the tablet
in both portrait and landscape modes.

Now define the content inside these sections of the split view. Here’s how to define the content
for the left menu section:

While defining the content of the left menu section, you use the component, which
provides an important wrapper to define the fixed header and footer components with a
scrollable content section in between. Within the component, you use the
component to define the fixed title of the section. Following the header, you use
the component to describe the scrollable content section. Within the body
of component, you use the component to fetch and display the Contact list.
Use the attribute on the component to specify the type for creating
the list view. Use other attributes such as , ,

, and to specify the behavior and display properties of this list
(hopefully, the attribute names are self-explanatory).

86

Chapter 7: Hybrid Development with Mobile Components for Visualforce

Now take a look at the content inside the section of the split view.

Similar to section, you use the component to define the contents of section
and to enable the use of , , and components. Using
the component, you specify the title to this section. Following the component,
use the component to specify the component. The component
takes the sObject type as an attribute and generates the mobile layout with details of the
associated record. The layout associated to the current user profile and associated record
type drives the mobile layout of the record. This gives administrators the flexibility to update
the mobile layout by using the standard Salesforce layout manager and avoids a
requirement for code modifications.

Easy Integration

The and components respect your org's , , and visibility
settings. Consequently, you can develop apps using these components without having to modify
existing security settings. Also, you can easily override the CSS styles of these components to
give them a look and feel as required by your project.

If you already know jQuery Mobile, notice that the , , ,
and components actually use the jQuery Mobile properties to enable the mobile user
experience. So, while using this component library, you can easily leverage other features of
jQuery Mobile too.

87

Hybrid Development with Mobile Components for Visualforce

Creating a Mobile Component for Visualforce
You can look at generic web pages on any smartphone or tablet, but the experience is quite a
bit better when the UI is optimized for mobile. If you’re a Visualforce developer, you’re already
half-way down the path to mobile-optimized applications. The HTML5 movement is in full
swing, and there are a number of mobile-optimized web frameworks that make it easy to
leverage its features. Already in this chapter you’ve seen how Visualforce Mobile Open
Components leverage jQuery Mobile and make it easy to generate mobile apps that use
Salesforce data. But you can also create those components yourself.

Introducing jQuery Mobile Pages
Take a look at a jQuery Mobile page from a high level. The framework heavily relies on tagging
elements with the data-role attribute for block-level page layouts, specifying one of a variety
of values. On page load, the jQuery Mobile framework searches the document for these elements

88

Chapter 7: Hybrid Development with Mobile Components for Visualforce

http://jquerymobile.com/

and takes control of them, adding behavior and styles that brands it as a mobile app. For
example, an element with a data-role value of page defines it as the most basic building block
of a jQuery Mobile application -- a single mobile-optimized page. When the page is parsed,
jQuery Mobile fills the screen with its contents, treating it as a single page in the mobile app.

There are other data-role attributes, which are designed to be used together to create a mobile
app. A page section looks best when it has a header section on top, a content section in the
middle, and a footer section on the bottom. When elements with these data-role values are
nested inside a page, the framework ensures that it looks as it should and that it looks consistent
across devices. Besides nesting elements, you can combine app sections horizontally as well. If
a page section has sibling page sections, jQuery Mobile displays only the first page section
when loading the app, and removes the others from the DOM to keep it lean and responsive.
Don’t worry, those pages are cached, and can be displayed by hash-linking to them by page
ID, complete with page load and transition animations.

Understanding Visualforce Mobile Components
jQuery Mobile has list views, navigation, and a variety of form inputs, which is perfect for
displaying and entering data on a mobile device. Combine this with a data source, such as your
Salesforce org, and you can quickly create mobile apps filled with meaningful and useful data.
With this in mind, let’s take a look at the Mobile Components for Visualforce library. Mobile
Components for Visualforce is an open source library that lets Visualforce developers easily
use a mobile app framework, like jQuery Mobile, by providing easy-to-use components. At
the time of this writing, the library is relatively new and doesn’t support every type of mobile
view and widget, but it has a strong core that makes creating new components to fill these gaps
pretty easy.

The following figure illustrates the Mobile Components for Visualforce architecture.

89

Hybrid Development with Mobile Components for Visualforce

http://jquerymobile.com/demos/1.1.0/docs/api/data-attributes.html
http://jquerymobile.com/demos/1.1.0/docs/pages/page-anatomy.html

A Visualforce page contains a variety of components, including mobile components provided
by Mobile Components for Visualforce. A mobile component relies on a JavaScript controller,
a JavaScript Remoting bridge, and a Visualforce controller to interact with the Force.com
database.

Building Custom Mobile Components for Visualforce
Now that you understand the architecture of Mobile Components for Visualforce, let’s make
a new component so that you can see exactly how it’s done. When it was first open-sourced,
the Mobile Components for Visualforce project consisted of only a handful of components,
including a List, a Navigation, and a Detail component. However, the jQuery Mobile framework
supports many other components, which means there is much room for growth in this project.

The following figure on the left shows an example of the List component that is already part
of Mobile Components for Visualforce. But wouldn’t it be cool to show a list of your org’s
users, complete with their profile pictures, such as in the following figure on the right?

90

Chapter 7: Hybrid Development with Mobile Components for Visualforce

jQuery Mobile has this type of list, called a Thumbnails List, which gives us a good head-start.
In this section, we're going to walk through the code that builds such a component, both
high-level in justifying the responsibility of each code snippet and low-level by showing and
explaining implementation details. With such an approach, this section is intended to be useful
as an introduction and reference for readers who may wish to create other types of components.

Following Along
If you would like to have a working example to follow along:

1. Create a new, free Developer Edition (DE) org.
2. Install the example managed package to build everything related to a

new ThumbnailsList component.

This package includes:

• A custom fork of the Mobile Components for Visualforce framework that includes some
modified versions of provided components, such as Page.

• The ThumbnailList component with a demo page named ThumbnailList.

Reviewing the Custom Visualforce Mobile Component
The following code is the custom ThumbnailList component. If you installed the sample package
in a DE org, you can find this code by clicking > Setup > Develop > Components >
ThumbnailList.

91

Hybrid Development with Mobile Components for Visualforce

http://jquerymobile.com/demos/1.1.0/docs/lists/lists-thumbnails.html
http://developer.force.com/join
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tE0000000LdrT

• Line 1: Notice that the component uses a custom Visualforce controller
ThumbnailListController. We'll examine this controller soon.

• Lines 3-20: These are run-time parameters that the component accepts. When a Visualforce
page utilizes this component, the component passes the associated attribute values to its
controller, which in turn passes them on to its JavaScript controller to reference. Note that
the assignTo parameters of each attribute reference the config object, which is defined on
the Visualforce controller. We'll review both of these controllers in subsequent sections.

• Line 23: This line includes the custom JavaScript controller, which is stored in the database
as a static resource. We'll review this controller soon.

92

Chapter 7: Hybrid Development with Mobile Components for Visualforce

• Line 24: The example Visualforce page in the next section includes a list item template
that uses Mustache tags, which is a well-known logic-less template tool. Therefore, we'll
need a JavaScript library that can parse the tags and fill the template with data. The
Mustache-supporting template tool that we are using for this component is called ICanHaz,
which is freely available as open source code. This line includes ICanHaz, which is also
stored in our database as a static resource.

• Lines 26-28: A standard to which the list items we generate will be
appended.

• Line 30: All components must register with the framework before they can render on page
requests, which is what this line is doing. For future discussions, note that this is where
the JavaScript controller receives the config object that is stored in the Visualforce controller.
This config object is used by both Visualforce and JavaScript controllers, as it communicates
essential information between them, such as the Visualforce controller's name, the root
element of the list, and whether the mobile app is in debug mode and permits debug
messages. This function parameter is expecting a JSON string, so there's a method in the
Visualforce controller, getConfigAsJson, that serializes the config object into JSON.

Reviewing an Example Visualforce Page
Now let's review the sample Visualforce page that uses the new ThumbnailList component.
If you installed the sample package in a DE org, you can find this code by clicking Setup >
Develop > Pages > ThumbnailList.

93

Hybrid Development with Mobile Components for Visualforce

http://mustache.github.com/
http://icanhazjs.com/

First, let's discuss the HTML template defined by the <script id="rowItemTempl"> tag, Lines
3-28. This template is an extension of the HTML for the example Thumbnail List on the
jQuery Mobile site. At the beginning of this article, we described how jQuery Mobile reads
elements that have specific properties. We need to use this array of properties on the li tags to
ensure they are styled properly by jQuery Mobile when they are added to the page's DOM.

Also, notice that the rowItemTempl template uses Mustache tags - ({{records}}, {{Id}},
{{FullPhotoURL}}, and {{Phone}}) - as placeholders for field values to simplify the process of
transforming JSON data into HTML elements. After parsing this template with ICanHaz
(discussed previously), we can push JSON data into it, which we receive from our JavaScript
Remoting requests to the Visualforce controller. This quickly and easily creates a list of li tags,
each with data specific to each record retrieved, and each with particular attributes that jQuery
Mobile can parse and handle. With this complete, we now have a complete way of getting
Salesforce data and rendering it to the page such that it looks like a native mobile app.

94

Chapter 7: Hybrid Development with Mobile Components for Visualforce

http://jquerymobile.com/demos/1.1.0/docs/lists/lists-thumbnails.html
http://mustache.github.com/

In the body of the page, review Lines 38-45. All that's necessary is a reference to the
custom ThumbnailList component (discussed previously), providing values for each of the
component's attributes.

Reviewing the JavaScript Controller
Next, let's review the JavaScript controller. Remember, one of the main functions of the
JavaScript controller is to serve as a data bridge to the component's Visualforce controller,
which we'll discuss in the next section. If you installed the sample package in a DE org, you
can find this code by clicking Setup > Develop > Site Resources > ThumbnailListJS > View
File.

95

Hybrid Development with Mobile Components for Visualforce

Line 2 demonstrates the syntax to use when inheriting the framework's $V.Component class.
How to implement this JavaScript controller, even though it is noted in the documentation,
needs more clarification. When extending this framework class, we need to fulfill the implied
contract, which is to implement the init, prepare, and render methods, and call
the this._super() method before any of their implementation logic. You can see this in Lines
3-25.

Let's look deeper at the significance of these methods. Why are they necessary, and how should
they be implemented? These methods are called from the framework, and the framework
expects them to perform specific actions. The framework will call a component's init method
when the object is first created, the prepare method right before rendering the component, and
the render method when the user requests the component to be rendered. With a simple
implementation like ours, we don’t need to do anything to setup this object, so we can leave
the init method empty. For the same reason, we can also leave the prepare method empty. Our
efforts are focused on the render method, in which we generate the list items by using the
HTML template in our page (see previous section). This render method:

• Fetches records from the server by calling the JavaScript Remoting method in our Visualforce
controller, getRecordsForConfig. We'll take a look at this method in the next section.

• Handles the server response with the requestRecordsHandler method, which translates the
record data into HTML strings, using therowItemTempl template, and appends it to
the ul element in the DOM.

96

Chapter 7: Hybrid Development with Mobile Components for Visualforce

Reviewing the Visualforce Controller
Finally, let's explore what's happening in the Visualforce controller that supports the
new ThumbnailList component. If you installed the sample package in a DE org, you can find
this code by clicking Setup > Develop > Apex Classes > ThumbnailList.

97

Hybrid Development with Mobile Components for Visualforce

• Lines 3-27: These methods set up the config object. Remember, both the JavaScript
controller and Visualforce controller, discussed earlier, rely on the config object to
communicate essential information back and forth.

• Lines 76-80: A method to serialize the config object as JSON, meant to be passed to
the $V.App.registerComponent method, in Line 30 of the component.

• Lines 29-32: A script include tag in the ThumbnailList component itself (Line 23) relies
on this getThumbnailListJS method to get the name of the JavaScript controller's file name.
By allowing a method to supply the name of this file, we can inject logic that returns either
the full source code version or a minified version. A minified version would be more suitable
when deploying this code to production, since it is a smaller filesize and a user can load the
script faster.

• Lines 34-50: The getRecordsForConfig method is the JavaScript Remoting method that
links together the JavaScript and Visualforce controllers. When called by the JavaScript

98

Chapter 7: Hybrid Development with Mobile Components for Visualforce

controller's requestRecords function, getRecordsForConfig does some setup and calls
thegetRecords method in the Visualforce controller to fetch and return the requested records.

• Lines 51-74: The getRecords method in the Visualforce controller fetches and returns the
requested records.

Wrapping Up
You can see the fruits of your labor and open the example page that uses the component you
just looked at. In your DE org, navigate to<pod>.salesforce.com/apex/ThumbnailList to see the
demo page that uses the new component. These components will help bring mobile app
development to a wider audience, enabling the thousands of Visualforce developers out there
to easily create mobile apps.

99

Hybrid Development with Mobile Components for Visualforce

Chapter 8

HTML5 Development

HTML5 lets you create lightweight interfaces without
installing software on the mobile device; any mobile, touch

In this chapter ...

• HTML5 Development
Requirements

or desktop device can access the same interface. You can
create an HTML5 application that uses Visualforce to deliver
the HTML content and fetches record data from Force.com• Accessing Data Using

JavaScript using JavaScript remoting for Apex controllers. The sample
application also utilizes the jQuery Mobile library for the
user interface.

101

HTML5 Development Requirements
• You must create a remote access application. See Creating a Remote Access Application.
• Some knowledge of Apex and Visualforce is necessary.
• You’ll need a Force.com organization.

Note: Since this development scenario uses Visualforce, you can’t use
Database.com.

Accessing Data Using JavaScript
HTML5 apps require two static resource files, one for JQuery libraries and another for JavaScript
remoting.

• The jQuery static resource contains all the JavaScript and stylesheet files for the jQuery
and jQuery Mobile libraries.

• You’ll also need a JavaScript file containing the methods that pull data from the Apex
controller using JavaScript remoting. This data is then wrapped into appropriate HTML
elements and rendered on the Visualforce page.

Take a look at the following JavaScript file.

• In , calls such as are an indication of
jQuery at work. In this case, jQuery retrieves the HTML element identified by ,
and clears out the HTML, readying it for results.

• The method then makes a call to the Apex controller’s method. This is
where the JavaScript remoting magic happens. Visualforce provides all the required plumbing
to allow the call to the controller method directly from the JavaScript.

• Finally, a callback function is passed as an argument to that is
automatically invoked once the records are returned from the Apex controller. The

 function takes these records and displays them.

102

Chapter 8: HTML5 Development

Now let’s take a look at .

• This function gets the records from the callback, loops through them, and creates a new
list of HTML elements to display within the div.

• Notice this function also dynamically attaches a new event to each list item so that when
the user clicks the list item, they can browse down to a list of tracks associated with the
album. The list of those tracks is fetched using .

Now let’s take a look at . Functionally, this code is very similar to the
 and code. The only significant difference to the code that

103

HTML5 Development

handled albums is that a different Apex controller method is used, and of course, a different
callback function is provided for updating the page with the results.

Now anytime the album name is clicked, a new set of track data will be retrieved and the
 will be rewritten. Clicking on the track name will rewrite the HTML of the elements

displaying the track information and use jQuery Mobile to move to that page. A real application
can, of course, cache this information as well.

104

Chapter 8: HTML5 Development

Chapter 9

Securely Storing Data Offline

Mobile devices can lose connection at any time, and
environments such as hospitals and airplanes often prohibit

In this chapter ...

• Accessing SmartStore in
Hybrid Apps

connectivity. To handle these situations, it’s important that
your mobile apps continue to function when they go offline.

• Offline Hybrid
Development The Mobile SDK uses SmartStore, a secure offline storage

solution on your device. SmartStore allows you to continue• Using the Mock
SmartStore working even when the device is not connected to the

Internet. SmartStore stores data as JSON documents in a
• Registering a Soup data structure called a soup. A soup is a simple one-table
• Retrieving Data From a

Soup
database of “entries” which can be indexed in different ways
and queried by a variety of methods.

• Working With Cursors
Note: Pure HTML5 apps store offline information
in a browser cache. Browser caching isn’t part of

• Manipulating Data
• SmartStore Extensions the Mobile SDK, and we don’t document it here.

SmartStore uses storage functionality on the device.
This strategy requires a native or hybrid
development path.

Sample Objects
The code snippets in this chapter use two objects, Account
and Opportunity, which come predefined with every
Salesforce organization. Account and Opportunity have a
master-detail relationship; an Account can have more than
one Opportunity.

105

http://en.wikipedia.org/wiki/Soup_(Apple)

Accessing SmartStore in Hybrid Apps
Hybrid containers access native device functionality, such as the camera, address book, and
file storage, through JavaScript. SmartStore is also accessed from JavaScript. In order to enable
offline access in a hybrid mobile application, you need to include a couple of JavaScript and
CSS files in your Visualforce or HTML page.

• — The Cordova library (formerly PhoneGap).
• – Contains methods that perform utility tasks, such as determining

whether you’re offline.
• – The core implementation of the SDK’s offline functionality.

You store your offline data in SmartStore in one or more soups. A soup, conceptually speaking,
is a logical collection of data records—represented as JSON objects—that you want to store
and query offline. In the Force.com world, a soup will typically map to a standard or custom
object that you wish to store offline, but that is not a hard and fast rule. You can store as many
soups as you want in an application, but remember that soups are meant to be self-contained
data sets; there is no direct correlation between them. In addition to storing the data itself, you
can also specify indices that map to fields within the data, for greater ease and customization
of data queries.

Note:

SmartStore data is inherently tied to the authenticated user. When the user logs out
of the app, SmartStore deletes soup data associated with that user.

Offline Hybrid Development
Developing a hybrid application inside the container requires a build/deploy step for every
change. For that reason, we recommend you develop your hybrid application directly in a
browser, and only run your code in the container in the final stages of testing. JavaScript
development in a browser is easier because there is no build/compile step. Whenever you make
changes to the code, you can refresh the browser to see your changes.

We recommend using the Google Chrome browser because it comes bundled with developer
tools that let you access the internals of the your web applications. For more information, see
Chrome Developer Tools: Overview.

106

Chapter 9: Securely Storing Data Offline

https://developers.google.com/chrome-developer-tools/docs/overview

Using the Mock SmartStore
To facilitate developing and testing code that makes use of the SmartStore while running
outside the container, you can use an emulated SmartStore. The MockSmartStore is a JavaScript
implementation of the SmartStore that stores the data in local storage (or optionally just in
memory).

Note: The MockSmartStore doesn't encrypt data and is not meant to be used in
production applications.

Inside the directory, there’s a local directory containing the following files:

• — A JavaScript implementation of the SmartStore meant only for
development and testing outside the container.

• A JavaScript helper class that intercepts SmartStore Cordova
plugin calls and handles them using a MockSmartStore.

• — A JavaScript helper class that intercepts Cordova plugin
calls.

In your application’s , after your JavaScript include for
and , add the following code to use the MockSmartStore.

To see the MockSmartStore in action, check out in a browser.

Same-origin Policies
Same-origin policy permits scripts running on pages originating from the same site to access
each other's methods and properties with no specific restrictions; it also blocks access to most
methods and properties across pages on different sites. Same-origin policy restrictions are not

107

Securely Storing Data Offline

an issue when your code runs inside the container, because the container disables same-origin
policy in the webview. However, if you call a remote API, you need to worry about same-origin
policy restrictions.

Fortunately, browsers offer ways to turn off same-origin policy, and you can research how to
do that with your particular browser. If you want to make XHR calls against Force.com from
JavaScript files loaded from the local file system, you should start your browser with same-origin
policy disabled. The following article describes how to disable same-origin policy on several
popular browsers: Getting Around Same-Origin Policy in Web Browsers.

Authentication
For authentication with MockSmartStore, you will need to capture access tokens and refresh
tokens from a real session and hand code them in your JavaScript app. You’ll also need these
tokens to initialize the JavaScript toolkit.

Registering a Soup
In order to access a soup, you first need to register it. Provide a name, index specifications, and
names of callback functions for success and error conditions:

If the soup does not already exist, this function creates it. If the soup already exists, registering
gives you access to the existing soup. To find out if a soup already exists, use:

A soup is indexed on one or more fields found in its entries. Insert, update, and delete operations
on soup entries are tracked in the soup indices. Always specify at least one index field when
registering a soup. For example, if you are using the soup as a simple key/value store, use a
single index specification with a string type.

The array is used to create the soup with predefined indexing. Entries in the
 array specify how the soup should be indexed. Each entry consists of a

 pair. is the name of an index field; is either “string” or “integer”. Index
paths are case-sensitive and can include compound paths, such as Owner.Name.

108

Chapter 9: Securely Storing Data Offline

http://romkey.com/2011/04/23/getting-around-same-origin-policy-in-web-browsers

Note: Performance can suffer if the index path is too deep. If index entries are missing
any fields described in a particular , they will not be tracked in that index.

Note: Currently, the Mobile SDK supports two index types: “string” and “integer.”
These types apply only to the index itself, and not to the way data is stored or retrieved.
It’s OK to have a null field in an index column.

The success callback function for takes one argument (the soup name).

A successful creation of the soup returns a that indicates the soup is ready.
Wait to complete the transaction and receive the callback before you begin any activity. If you
register a soup under the passed name, the success callback function returns the soup.

The error callback function for takes one argument (the error description
string).

During soup creation, errors can happen for a number of reasons, including:

• An invalid or bad soup name
• No index (at least one index must be specified)

109

Securely Storing Data Offline

• Other unexpected errors, such as a database error

Retrieving Data From a Soup
SmartStore provides a set of helper methods that build query strings for you. To query a specific
set of records, call the method that suits your query specification. You can optionally
define the index field, sort order, and other metadata to be used for filtering, as described in
the following table:

DescriptionParameter

This is what you’re searching for; for example a name, account
number, or date.

Optional. Used to define the start of a range query.

Optional. Used to define the end of a range query.

Optional. Either “ascending” or “descending.”

Optional. If not present, the native plugin can return whatever page
size it sees fit in the resulting .

Note:

All queries are single-predicate searches. Queries don’t support joins.

Query Everything
 returns all entries in the soup,

with no particular order. Use this query to traverse everything in the soup.

 and are optional, and default to ascending and 10, respectively. You can
specify:

•
•
•

However, you can't specify .

See Working With Cursors for information on page sizes.
110

Chapter 9: Securely Storing Data Offline

Note: As a base rule, set to the number of entries you want displayed on
the screen. For a smooth scrolling display, you might want to increase the value to
two or three times the number of entries actually shown.

Query by Exact
 finds entries that

exactly match the given for the value. Use this to find child entities
of a given ID. For example, you can find Opportunities by Status. However, you can’t specify
order in the results.

Sample code for retrieving children by ID:

Sample code for retrieving children by parent ID:

Query by Range

finds entries whose values fall into the range defined by and .
Use this function to search by numeric ranges, such as a range of dates stored as integers.

 and are optional, and default to ascending and 10, respectively. You can
specify:

•
•
•

However, you can't specify
.

By passing null values to and , you can perform open-ended searches:

• Passing to finds all records where the field at is >= .
• Passing to finds all records where the field at is <= .

111

Securely Storing Data Offline

• Passing to both and is the same as querying everything.

Query by Like
 finds entries

whose values are like the given . You can use “foo%” to search for terms
that begin with your keyword, “%foo” to search for terms that end with your keyword, and
“%foo%” to search for your keyword anywhere in the value. Use this function for
general searching and partial name matches. and are optional, and default
to ascending and 10, respectively.

Note: Query by Like is the slowest of the query methods.

Executing the Query
Queries run asynchronously and return a cursor to your JavaScript callback. Your success
callback should be of the form . Use the parameter to pass
your query specification to the method.

Retrieving Individual Soup Entries by Primary Key
All soup entries are automatically given a unique internal ID (the primary key in the internal
table that holds all entries in the soup). That ID field is made available as the
field in the soup entry. Soup entries can be looked up by by using the

 method. Note that the return order is not guaranteed, and if entries
have been deleted they will be missing from the resulting array. This method provides the
fastest way to retrieve a soup entry, but it's usable only when you know the :

Working With Cursors
Queries can potentially have long result sets that are too large to load. Instead, only a small
subset of the query results (a single page) is copied from the native realm to the JavaScript
realm at any given time. When you perform a query, a cursor object is returned from the native
realm that provides a way to page through a list of query results. The JavaScript code can then
move forward and back through the pages, causing pages to be copied to the JavaScript realm.

112

Chapter 9: Securely Storing Data Offline

Note: For advanced users: Cursors are not snapshots of data; they are dynamic. If you
make changes to the soup and then start paging through the cursor, you will see those
changes. The only data the cursor holds is the original query and your current position
in the result set. When you move your cursor, the query runs again. Thus, newly created
soup entries can be returned (assuming they satisfy the original query).

Use the following cursor functions to navigate the results of a query:

•
—Move the cursor to the page index given,

where 0 is the first page, and the last page is defined by .
•

—Move to the next entry page if such a page exists.
•

—Move to the previous entry page if such a
page exists.

•
—Close the cursor when you're finished with it.

Note: for those functions should expect one argument (the
updated cursor).

Manipulating Data
In order to track soup entries for insert, update, and delete, the SmartStore adds a few fields
to each entry:

• —This field is the primary key for the soup entry in the table for a given
soup.

• —The number of milliseconds since 1/1/1970.

◊ To convert to a JavaScript date, use
◊ To convert a date to the corresponding number of milliseconds since 1/1/1970, use

When inserting or updating soup entries, SmartStore automatically sets these fields. When
removing or retrieving specific entries, you can reference them by .

113

Securely Storing Data Offline

Inserting or Updating Soup Entries
If the provided soup entries already have the slots set, then entries identified
by that slot are updated in the soup. If an entry does not have a slot, or the
value of the slot doesn't match any existing entry in the soup, then the entry is added (inserted)
to the soup, and the slot is overwritten.

Note: You must not manipulate the or
value yourself.

Use the method to insert or update entries:

where is the name of the target soup, and is an array of one or more
entries that match the soup’s data structure. The and
parameters function much like the ones for . However, the success callback
for indicates that either a new record has been inserted, or an existing
record has been updated.

Upserting with an External ID
If your soup entries mirror data from an external system, you might need to refer to those
entities by their ID (primary key) in the external system. For that purpose, we support upsert
with an external ID. When you perform an upsert, you can designate any index field as the
external ID field. SmartStore will look for existing soup entries with the same value in the
designated field with the following results:

• If no field with the same value is found, a new soup entry will be created.
• If the external ID field is found, it will be updated.
• If more than one field matches the external ID, an error will be returned.

When creating a new entry locally, use a regular upsert. Set the external ID field to a value
that you can later query when uploading the new entries to the server.

When updating entries with data coming from the server, use the upsert with external ID.
Doing so guarantees that you don't end up with duplicate soup entries for the same remote
entity.

In the following sample code, we chose the value for the field because the record doesn’t
yet exist on the server. Once we are online, we can query for records that exist only locally (by
looking for records where) and upload them to the server. Once the server
returns the actual ID for the records, we can update their fields locally. If you create products
that belong to catalogs that have not yet been created on the server, you will be able to capture

114

Chapter 9: Securely Storing Data Offline

the relationship with the catalog through the field. Once the catalogs
are created on the server, update the local records’ fields.

The following code contains sample scenarios. First, it calls to create
a new soup entry. In the success callback, the code retrieves the new record with its newly
assigned soup entry ID. It then changes the description and calls methods to create
the new account on the server and then update it. The final call demonstrates the upsert with
external ID. To make the code more readable, no error callbacks are specified. Also, because
all SmartStore calls are asynchronous, real applications should do each step in the callback of
the previous step.

115

Securely Storing Data Offline

Removing Soup Entries
Entries are removed from the soup asynchronously and your callback is called with success or
failure. The is a list of the values from the entries you wish
to delete.

Removing a Soup
To remove a soup, call . Note that once a user signs out, the soups get deleted
automatically.

SmartStore Extensions
Some apps might profit by extending the SmartStore API in various ways.

• Secure localStorage—W3C's is a simple key-value storage that can be
readily implemented on top of SmartStore. For instance, a single soup
can be created by the SmartStore plugin on each platform, and the can be the
key passed to the methods. This is a convenience layer for developers who
are already familiar with and comfortable with its limitations. The main
difference in our implementation is the need to rely on Cordova-style JavaScript callbacks,
so all methods are asynchronous.

• Files and Large Binary Objects—Some apps require the ability to store large binary objects,
such as video, PDF, and PPT files. For these apps, there is currently no consistent secure
storage mechanism in Cordova.

116

Chapter 9: Securely Storing Data Offline

Chapter 10

Advanced Topics

The previous chapters focused on getting your basic app
built, with some additional tweaks that show you how to

In this chapter ...

• Customize the Hybrid
Sample App to Use the
Camera

get the sample applications do what you want. By this time
you can probably create projects, build apps, and modify the
sample apps to work with your own organization and its
data. The following sections help you continue to build out
your app by adding additional functionality in the device.

• Bar Code and QR Code
Scanning

• Geolocation and Mobile
Apps

• Utilizing Near Field
Communication (NFC) in
Hybrid Apps

117

Customize the Hybrid Sample App to Use the Camera
This section shows you how hybrid apps can access the native features of the device, specifically
the camera. To get you started quickly, we’ve provided a sample project.

1. Point your browser to GitHub and download the GlueCon 2012 Salesforce Mobile
SDK Demo project into a new directory:

2. Copy the files and images from
 directory into your hybrid

app's directory, overwriting , and , and
creating a new folder.

Before you run the app, you’ll need to make a couple of customizations to the Contact standard
object in your DE org. You’ll need to create one custom field to hold the image ID, and another
to display the image on the Contact Page Layout. The app uploads images to ContentVersion
records, and updates the Contact record with the new ContentVersion record's ID.

1. Log in to your DE account and select > Setup > App Setup >
Customize > Contacts > Fields.

2. Scroll down to Contact Custom Fields & Relationships and click New.
3. Select Text as the field type and click Next.
4. On the following screen, enter:

• Field Label: Image ID
• Length: 18

5. Click Next, then click Next again to accept the field-level security defaults. On the
next screen, deselect all of the page layouts and click Save & New.

Note: The image field should be visible to the user, but the image ID... not
so much. By deseleting the ID field here, it won’t be added to the page
layout.

You’re going to create another field, but this one is based on a formula.

1. Select Formula as the field type and click Next.
2. On the following screen, enter:

• Field Label: Image

118

Chapter 10: Advanced Topics

• Formula Return Type: Text

3. Click Next and enter the following formula.

4. Click Next, then click Next again to accept the field-level security defaults, and
click Save to accept the page layout defaults.

Note: This time the image field should be displayed on all page layouts.

Run the App

Now that you’ve configured your project and the Contacts standard object, you’re ready to run
the demo app and upload images to contacts!

Note: There is no camera in the iOS simulator, so you’ll need to run this on a physical
device.

1. Launch the app, login if necessary, and click Fetch SFDC contacts.
2. In the demo app, you can click a contact in the list to access a contact detail page,

including a placeholder for a photo of the contact.

119

Advanced Topics

3. Tap the placeholder image and the camera will activate.
4. Take a picture, and the contact detail page will be updated with the image, the image

data will be uploaded to a ContentVersion record, and associated with the contact.

5. To verify that this really worked, log into your DE org.
6. Click the Contacts tab, you’ll see the contact in the Recent Contacts list.
7. Click on the contact and you’ll see the photo alongside the standard Contact data.

120

Chapter 10: Advanced Topics

How the Demo App Works

Take a look at and , and you’ll see a number of differences from the
sample app. The device contacts and accounts lists have been removed from ,
and there is a new 'Contact Detail' page comprising an image and Name, Account Name and
Phone Number fields.

In , look at first.

121

Advanced Topics

For each record passed in, within the response we create a list item with its name, and set up
a click handler on the list item to retrieve the contact's name, account name, phone number,
and image.

The query callback, , populates the contact detail page.
Notice the code to display the contact image.

122

Chapter 10: Advanced Topics

The contact ID and name are set as attributes on the image element, and, if there is an ID in
the custom field, a 'loading' image is displayed, and the image data is retrieved
via .

The utility function converts the JavaScript object
to base64-encoded data as a string, and the callback sets the image data as a data URI.

Looking at , this function loses the
 and , but

gains a new one:

Clicking the image calls the function, passing in the
contact name and ID attributes from the image element.

 really shows the power of the hybrid approach.
The function provides easy access to the device
camera. The options passed to specify the required image quality, source
(camera in this case, as opposed to the device's photo library), and the format in which the
picture should be returned. returns the image as
a base64–encoded string, while returns a URI to
a file on the device.

123

Advanced Topics

When a picture is successfully taken, the callback is invoked.

After updating the on-screen image, a record is created. Note that we
indicate the type of the data via the extension on the field. On successful
creation, the contact is updated with the ID of the new record.

Bar Code and QR Code Scanning
Hybrid apps fall somewhere in between the web and native spectrum of mobile development.
Like web apps, hybrid mobile apps are developed primarily in web technologies like HTML5,
JavaScript, and CSS. However, you can then use the Salesforce Mobile SDK container (which
is based on the open source PhoneGap project) to put a thin native ‘wrapper’ around the web
application and access native device features like the camera, microphone, etc. Hybrid
applications can access native device capabilities – the ability to snap a picture on the mobile
device and attach it to the respective Merchandise record in Salesforce. Another common use
case for developing Hybrid applications is scanning bar codes or QR codes.

124

Chapter 10: Advanced Topics

http://phonegap.com/

So how does one go about adding support for bar code scanning in a Hybrid mobile application?
This is where the beauty of the PhoneGap (aka Apache Cordova) hybrid framework shines
through. PhoneGap has a rich ‘plugin’ library of open source components built by
the community to support advanced use cases like push notification, mobile payments (using
PayPal) and yes, bar code and QR Code scanning. In fact, the Salesforce Mobile SDK itself
uses PhoneGap plugins to support our OAuth login process and our secure offline storage (aka
SmartStore).

Let’s say we wanted to enhance our MerchandiseMobile Visualforce page to allow users to
search for Merchandise records by scanning a bar code or QR Code. You can peruse the final
codebase for this application in GitHub, but here are the step-by-step instructions for adding
bar code scanning to your Hybrid mobile application.

1. Convert your Visualforce page into a Hybrid application using the Salesforce Mobile
SDK. Detailed instructions on how you can do this can be found in Tutorials 5 (iOS)
and 6 (Android) of the Mobile SDK workbook.

2. Download the GitHub repo for the PhoneGap plugins to your local machine (using
git clone or clicking the ‘Downloads’ link on the top right). Depending on which
mobile platform you’re developing for, follow the instructions in the readme file to
import the bar code scanner plugin in your Android or iOS project.

3. Import the barcodescanner.js file that is included in the PhoneGap plugin Git repo
into your Visualforce page. For example, here is a small snippet from my
MerchandiseMobile VF page.

Note: You also need to import the core PhoneGap JS file in your Visualforce
page.

4. We’re now ready to initiate bar code scanning from our Visualforce page. The great
thing about PhoneGap is that you can access all device functions via JavaScript – no

125

Advanced Topics

https://github.com/phonegap/phonegap-plugins
http://blogs.developerforce.com/developer-relations/2012/03/offline-support-in-salesforce-mobile-sdk.html
https://github.com/sbhanot-sfdc/Visualforce-HTML5-Mobile
https://github.com/forcedotcom/SalesforceMobileSDK-Samples/raw/master/Mobile_SDK_Workbook.pdf
https://github.com/phonegap/phonegap-plugins
https://github.com/phonegap/phonegap-plugins/tree/master/Android/BarcodeScanner
https://github.com/phonegap/phonegap-plugins/tree/master/iOS/BarcodeScanner

iOS/Android specific coding required. Here is how to invoke the Bar Code scanner
PhoneGap plugin in the Visualforce page.

Line 2 shows how simple it is to use bar code scanning using the custom PhoneGap
plugin. If the bar code/QR code scan is successful, the success callback function gets
invoked with the scanned text or string (‘result.text’ above). The plugin also passes
along the format of the bar code scanned (e.g. ‘QR_CODE’, ‘UPC_A’,
‘DATA_MATRIX’ etc.) via the ‘result.format’ variable. Then simply use JavaScript
Remoting to invoke a method on the Apex controller attached to this VF page (line
6) to search for any Merchandise records that match the scanned bar code value.

In addition to using the hybrid approach described above, you can also implement bar code
scanning in a native mobile application if you’re comfortable with native Android or
iOS development.

126

Chapter 10: Advanced Topics

Geolocation and Mobile Apps
The composite field type, geolocation, consists of two components: longitude and latitude. It
is specifically designed to hold the geo-coordinates of a location for any objects, most commonly
address related objects, such as Contact, Account, restaurants, shops, etc. When a geolocation
field is added to these objects, and coordinates are set, users can perform radius-based searches.
Some examples: to find the records of restaurants within 5 miles of the current location, to
find all the homes within 15 miles of a sports arena, etc.

Mobile applications find this new feature especially handy for providing mobile location-based
search on Salesforce objects. Just like a regular custom field type, the geolocation field can be
added to an object through the object setup wizard. During setup you can set the decimal point
precision, which allows users to display coordinates in decimal point or degree-minute-second
notations.

Note: This is a beta release of geolocation and its functionality has known limitations,
outlined here. To provide feedback on geolocation, go to IdeaExchange.

Creating a Geolocation Custom Field
1. Click > Setup > Create > ObjectsCreate > Objects and select one of

the custom objects in the list.
2. In Custom Fields & Relationships, click New.
3. Choose Geolocation and click Next.
4. Enter the Geolocation field attributes, including Latitude and Longitude Display

Notation , which determines how the notation appears in the Salesforce interface:

Degrees, Minutes, Seconds
A notation for angular measurement that is based on the number 60: there are
360 degrees to a circle, 60 minutes to a degree, and 60 seconds to a minute.

Decimal
Expresses the value as degrees, and converts the minutes and seconds to a
decimal fraction of the degree. Decimal notation does not use cardinal points.
North and East are positive values; South and West are negative values.

5. Follow the steps to complete the wizard.

127

Advanced Topics

http://success.salesforce.com/ideaView?id=0873000000082btAAA

Radius-based Searching and Filtering
List views for objects with a geolocation field have a operator to conduct radius based
searching and filtering. You can perform distance calculation between two geolocation points
using the function inside formula fields.

Also, SOQL is enhanced with and functions, which lets you write
SOQL queries to perform location-based searches. For example, the geo coordinates of 1
Market Street, San Francisco, California are 37.794915,-122.394733. To find the names and
phone numbers of all restaurants within 1 mile, you can write a SOQL query as:

Geolocation Field Limitations
Geolocation is a compound field that counts toward your organization’s limits as three custom
fields: one for latitude, one for longitude, and one for internal use. In this beta release, support
for the compound field (geolocation) vs. the field’s components (latitude and longitude) varies
depending on the functionality you’re using in Salesforce. For example, you can create list views
that show the field and its components, but you can’t select the compound geolocation field
in Apex; you can only run SOQL queries on a geolocation field’s components.

Other limitations of this geolocation beta release include:

• History tracking is not available for geolocation fields.
• Geolocation fields are not supported in custom settings.
• Geolocation fields are not available in reports, dashboards, validation rules, Visual Workflow,

or workflow and approvals.
• Geolocation fields cannot be searched.
• Geolocation fields are not available in Schema Builder.
• DISTANCE and GEOLOCATION formula functions are available only when creating

formula fields and in Visual Workflow.
• Geolocation is supported in Apex only through SOQL queries, and only at the component

level.

Utilizing Near Field Communication (NFC) in Hybrid
Apps

Imagine walking a conference floor, having the ability to instantly and effortlessly upload any
business card you receive into your Salesforce org as a full blown Contact record. You don't

128

Chapter 10: Advanced Topics

need to open an application on your smartphone and take a QR code picture. You don't need
to take a picture of the card and type in the information later. You just tap the business card
to your smartphone and it's instantly uploaded into Salesforce. You can do this with the
Salesforce Touch Platform and a near field communications-enabled device.

NFC stands for Near Field Communication. It allows devices to exchange data wirelessly at
very short ranges (less than a few centimeters). Devices that can transmit data via NFC are
called "tags." Tags can come in varying physical shapes and sizes, such as round stickers, business
cards, credit cards, or nametags. They also come in a variety of data sizes, holding as little as
a few bytes to up to four Kilobytes or more. As you might expect, the data on tags can be
encoded in a variety of formats. That being said, there is one format that is widely used called
NDEF (NFC Data Exchange Format). Formatting a tag in NDEF format allows an easy
exchange of the tag data with systems that leverage the format. For example, Android devices
support the NDEF format and are the easiest format to get started with.

Requirements

You need to ensure you have a mobile device that supports NFC if you want to execute this
application in the wild. You can get a list of Android NFC phones online by searching for
“NFC Smartphones.” You'll also need some NFC tags to work with. Again, you can Google
for NFC tags and get a list of retailers who sell blank or NDEF-formatted tags. Getting the
tags NDEF formatted from the retailer makes it somewhat easier to encode your data. Also,
ensure you review the size of data the NFC tag can hold. Depending on your needs, you might
want a tag with more data capacity.

Note that there are some software NFC emulators available for downloading if you don’t have
the hardware. Software emulators are not covered here.

Force.com and NFC Mobile Application Architecture

If you just want to follow along and not get your hands dirty building this yourself, download
the source code for they hybrid Android app from the NFC vCard Cloud Loader app:

.

One great thing about PhoneGap is its plugin architecture. The PhoneGap framework allows
developers to create plugins that utilize hardware in a device and return data from those devices
to mobile applications HTML via JavaScript. Since NFC is dependent on native API calls to
the device, the app uses an open source NFC PhoneGap plugin created by Don Coleman at
Chariot Solutions. You can get the NFC Plugin on his Github site

.

129

Advanced Topics

https://github.com/chariotsolutions/phonegap-nfc

Installing the NFC PhoneGap Plugin

Installing a PhoneGap plugin is a fairly easy and straightforward process. There are only a few
things you need to do.

1. Download from

and the JavaScript file () for the plugin.
2. Copy the JAR file for the Plugin into your application's library folder and ensure the

JAR file is on your application's classpath.
3. Copy the JavaScript file () into your application's JavaScript

folder.
4. Update your HTML files to include the plugins JavaScript file.

5. Update your PhoneGap plugin xml file (plugins.xml) to include the plugin class:

6. Update your Android Manifest file to allow the application device permission to use
NFC:

7. Optional – Android has a special notification system for NFC tags. The NFC Tag
Dispatcher runs in the background of Android and can be configured to automatically
start an application once a device scans an NFC tag. This allows your application to
instantly fire when an NFC tag is read. To do this, update your Android Manifest
with the proper intent tags:

130

Chapter 10: Advanced Topics

https://github.com/chariotsolutions/phonegap-nfc/downloads

That is everything you need to do to configure your workspace and application for NFC. Now,
let’s take a look at the application code.

Invoking the NFC Plugin via JavaScript

NFC functionality is event-driven. As such, you need to have your application listen for the
NFC tag scans fired from the Android Tag Dispatcher and then execute logic. The NFC
PhoneGap Plugin handles the heavy lifting for processing the NFC tag read events. You just
need to register listeners in the JavaScript to process the callbacks from the NFC Plugin. To
do this, you register the NFC listeners for the plugin object inside the device-ready method
of PhoneGap:

As you can see above, you specify the callback handler (onNfcRead) to process the tag data
returned from the NFC tag. You also have two additional callback methods
specified: and . Those
methods execute once the listener is successfully register in our JavaScript.

You can specify in the JavaScript how to handle the results of a NFC tag. The code below
displays the NFC tag data on the screen when it’s scanned. Then parse the tag data, formatted

131

Advanced Topics

in vCard format, and store it in a contact variable. This contact variable eventually passes to
the Mobile SDK to be inserted into Salesforce.

132

Chapter 10: Advanced Topics

As you can see in the above code, the JavaScript processes the returned NDEF tag payload
from the NFC plugin. You then parse the tag information, format in vCard format, and append
it to the DOM. The information then renders on the screen to the user. If you are unfamiliar
with vCard formatted data, it is basically a way to electronically represent widely-used business
card data.

Upserting the Information into Force.com with Mobile SDK

Now that you have successfully scanned the tag, you can do a variety of things with the data.
In this sample application, you are going to upsert the contact information into the standard
Contact object using the Mobile SDK. The method for upserting data is inside the forcetk.js
file, which utilizes the Force.com REST API to process data. We use the contact variable we
populated in our NFC processing code above as the input into Force.com. Finally, the user
initiates the upload into Force.com by clicking the button on the page, although you can easily
automate this on the read success method above to make this completely automatic.

After following this use case through completely, if you navigate to the Contacts tab in
Force.com and view the recently-added Contacts, you can see the newly-created contact from
our NFC tag!

Wrap Up - The Internet of Things and the Future of NFC

As you can see from this simple application, using NFC tags and smartphones opens up a
whole world of possibilities for The Internet of Things. For those unfamiliar with the concept,
it boils down to real-world objects representing themselves automatically on the Internet. For
example, the business card had an NFC tag attached to it, and via your application, automatically
communicated its data to our application. This allowed you to easily represent that real-world
object in a Salesforce.com org.

You can tag almost anything and track that object in Salesforce. You can tag marketing kiosks
to allow users to process leads at a conferencing event. You can set up tags in your business to

133

Advanced Topics

allow customers to scan products and add them to their shopping lists, or even pay for them
automatically via their smartphone, streamlining the whole checkout and purchase process. If
you live in the city and take public transit, imagine replacing the transit card in your pocket
with an application on your smartphone.

134

Chapter 10: Advanced Topics

Chapter 11

Distributing Mobile AppExchange Apps

Apps have completely redefined the mobile experience.
When selecting a new smartphone or a tablet, consumers

In this chapter ...

• AppExchange for Mobile:
Enterprise Mobile Apps

consistently rate app availability as the most import factor
in their decision. So naturally, after you’ve developed your
mobile app, you’ll want to make it available so customers or• Joining the AppExchange

Partner Program staff can easily find, buy it, and install it. Android and iOS
have proprietary stores that list and distribute mobile apps,• Get a Publishing Org
which won’t be covered in this guide. Salesforce also has a• Create a Provider Profile
marketplace called the AppExchange, where partners can
list mobile apps and consulting services for Salesforce.• The AppExchange

Security Review

135

AppExchange for Mobile: Enterprise Mobile Apps
With almost half a million mobile app listings in consumer app stores, discovering the perfect
enterprise app that is secure, trusted, and works within the Salesforce ecosystem can be a
frustrating process. To help our customers find the perfect mobile app and to help developers
reach millions of active Salesforce users, go to — the first
cross-platform marketplace dedicated to enterprise mobile apps.

The AppExchange fo Mobile connects developers with Salesforce users.

• Salesforce users can discover brand new mobile apps that are trusted, work with an existing
account, and leverage data that’s already in the cloud.

• ISVs can list their native, hybrid, and HTML5 applications that work on Android, iOS,
and other platforms in a central repository. It doesn’t matter whether the app is free, has a
fixed price, or is sold with a subscription model.

136

Chapter 11: Distributing Mobile AppExchange Apps

Whether you’re a developer that is working on a special purpose app that brings a unique
mobile perspective for solving a specific problem, or a complete solution for a specific role, the
space is completely open.

In order to distribute your commercial mobile app on AppExchange, you’ll need to become a
Salesforce partner.

1. Join the AppExchange Partner Program.
2. Log a case in the Partner Portal for a publishing org.
3. Create your Provider Profile on AppExchange.
4. Request a security review.
5. Log a case in the Partner Portal to request your app is listed on AppExchange for

Mobile.

Note: If you’re a Salesforce admin creating mobile apps for distribution within your
organization, you don’t need a public listing on the AppExchange.

Joining the AppExchange Partner Program
The first thing you need to do is join the AppExchange Partner Program. This program is
designed to help independent software vendors (ISVs) be successful on the Salesforce platform.

1. In your browser go to www.salesforce.com/partners and click Join Now.
2. Select the first option: I want to build and market apps built on the Force.com

platform (AppExchange Partner Program)
3. Answer questions about your application and your target market.
4. Fill in the fields about you and your company.
5. In the Additional Questions area, click the drop-down boxes and select the

appropriate answer.
6. Enter the Captcha words shown and click Submit Registration.
7. In a moment you will receive an email with your username and temporary password.

Click the link to the Partner Portal
(https://sites.secure.force.com/partners/PP2PartnerLoginPage) and log in.

8. Accept the terms of use and then dismiss the pop-up that appears.
9. Bookmark this page, you'll be using it a lot.

In the Partner Portal you’ll see quick links to some of the most used resources, and docs and
video to get you started quickly. Most of this information is targeted at ISVs who create add-ons

137

Distributing Mobile AppExchange Apps

http://www.salesforce.com/partners
https://sites.secure.force.com/partners/PP2PartnerLoginPage

or services for Salesforce users. As a mobile ISV, you’ll want to work closely with an
AppExchange Partner Program representative.

Get a Publishing Org
In order to manage the distribution and support of your mobile app, you’ll want to get a
Salesforce organization that has full sales, marketing, and support functionality. This org is
called the AppExchange Publishing Org, or APO for short. Qualified partners can get one
for free through the Partner Portal.

1. In the Partner Portal, in the Quick Links section, click Create a Case.

Figure 1: Create a Case

2. In the Category section, choose the first option.
3. In the first category box, choose AppExchange and Service Listings.
4. In the second category box, choose Request CRM for Partner.
5. In the Reason drop-down box, choose Administration Request.
6. In the Severity drop-down box, choose High.
7. In the Subject, enter .
8. In the Description field, tell us if you have an existing org or if you need a new one.

If you have an existing Salesforce org, you can provide the Org ID in the Description
field and two additional CRM licenses will be added to your org. If you don't have
an existing org, we'll provide a new one for you. In either case, make sure to enter
your business address and then click Save.

138

Chapter 11: Distributing Mobile AppExchange Apps

Figure 2: Create a Case in the Partner Portal

9. Shortly, you'll receive another email prompting you to log in and change your
password. Do that, and then bookmark the page as before.

Create a Provider Profile
A provider profile represents your company on the AppExchange. You’ll need to log into the
Salesforce organization where you’ll manage your business. If you’re a qualified partner, you
might already have an APO org. If not, you can use the Developer Edition org.

1. On the login page, use your username and password for your AppExchange
Publishing Organziation (APO).

2. Fill out the information in the Provider Profile and then click Save.

139

Distributing Mobile AppExchange Apps

The AppExchange Security Review
Before you can list an app on AppExchange, you’ll need to submit your app for a security
review. The fastest way through the security review is to fully understand the security guidelines
and process, which is online at http://wiki.developerforce.com/page/Security_Review.

The following procedure is for submitting packaged applications, but the steps are the same
for mobile apps. After you submit the form, a representative will contact you for next steps.

1. Click Start Review on the Offering tab when editing the listing.
2. Select whether you charge for your application or if your application is free. Free

applications must complete the review, but the review fee is waived.
3. If you charge for your application, Partner Operations will email you information

within two business days on how to pay for the review. This is an annual payment.
4. Indicate if your application integrates with any web services outside of Force.com,

including your own servers.
5. If your application integrates with other web services, list all of them in the

 box. You can enter up to 1000 characters.
6. If your application integrates with other web services, select how your application

authenticates with those services. Enter any helpful comments in the box provided.
You can enter up to 1000 characters.

7. Indicate if your application stores salesforce.com user credentials outside of Force.com.
8. Indicate if your application stores salesforce.com customer data outside of Force.com.
9. If your application stores salesforce.com customer data outside of Force.com, list all

salesforce.com objects accessed in the box. You can enter up
to 255 characters.

10. Indicate if your application requires that customers install any client components,
such as software or plug-ins.

11. If your application requires client components, enter the details in the
 box. You can enter up to 1000 characters.

12. Click Start Security Review to start the AppExchange Security Review. To discard
your changes and return to the previous page, click Cancel.

Note: After collecting payment, the security team will send the partner a
survey to collect detailed information on how to test their app. This will
include information like install links, test credentials etc. that are mentioned
in the next section.

13. You are contractually required to keep this information current. For example, if you
upgrade your app to use a new web service, you must edit the information in your

140

Chapter 11: Distributing Mobile AppExchange Apps

http://wiki.developerforce.com/page/Security_Review

security review submission. To edit your submission information, click Edit Review
on the Offering tab when editing the listing. Apps are reviewed again periodically.

Mobile apps have additional security steps, and you’ll need to provide the following, depending
on the phone type:

• iOS Mobile app — Provide the install link if the application is free and already published
to the Appstore. If the application is not yet approved or is not free, please either provide
an ad-hoc installation (contact us for device UDIDs), or a Testflight link for the app. (no
UDID required). More information about Testflight is available
at: https://testflightapp.com/. If credentials other than the Salesforce account login, or
related external application credentials are required or optional for the mobile application,
please provide them as well. If sample data is required for the application to function, please
include a logical set of sample data.

• Android app — Provide the .APK for the android application and the target device. If
credentials other than the Salesforce account login, or related external application credentials
are required or optional for the mobile application, please provide them as well. If sample
data is required for the application to function, please include a logical set of sample data.

141

Distributing Mobile AppExchange Apps

https://testflightapp.com/

Chapter 12

Reference

The Mobile SDK reference documentation is hosted on
GitHub, which provides a superior viewing and navigating
experience.

In this chapter ...

• REST API Resources
• iOS Architecture
• Android Architecture

143

REST API Resources
The Salesforce Mobile SDK simplifies using the REST API by creating wrappers. All you
need to do is call a method and provide the correct parameters; the rest is done for you. This
table lists the resources available and what they do. For more information, see the REST API
Developer's Guide.

DescriptionURIResource
Name

Lists summary information about each
Salesforce version currently available,

Versions

including the version, label, and a link
to each version's root.

Lists available resources for the
specified API version, including
resource name and URI.

Resources
by
Version

Lists the available objects and their
metadata for your organization's data.

Describe
Global

Describes the individual metadata for
the specified object. Can also be used

SObject
Basic
Information to create a new record for a given

object.

Completely describes the individual
metadata at all levels for the specified
object.

SObject
Describe

Accesses records based on the specified
object ID. Retrieves, updates, or

SObject
Rows

deletes records. This resource can also
be used to retrieve field values.

Creates new records or updates
existing records (upserts records) based

SObject
Rows
by on the value of a specified external ID

field.External
ID

144

Chapter 12: Reference

http://developer.force.com/REST
http://developer.force.com/REST

DescriptionURIResource
Name

Retrieves the specified blob field from
an individual record.

SObject
Blob
Retrieve

Set, reset, or get information about a
user password.

SObject
User
Password

Executes the specified SOQL query.Query

Executes the specified SOSL search.
The search string must be
URL-encoded.

Search

iOS Architecture
At a high level, the current facilities that the native SDK provides to consumers are:

• OAuth authentication capabilities
• REST API communication capabilities
• SmartStore secure storage and retrieval of app data

Note: This is not currently exposed to native template apps, but is included in the
binary distribution.

The Salesforce native SDK is essentially one library, with dependencies on (and providing
exposure to) the following additional libraries:

• — Third-party underlying libraries for facilitating REST API calls.

◊ RestKit in turn depends on , which is part of the standard iOS
development environment

• — Underlying libraries for managing OAuth authentication.

145

Reference

• — Library providing access to SQLite capabilities. This is also a
part of the standard iOS development environment.

• — Objective-C wrapper around SQLite.

Note: This is not currently exposed to native template apps, but exposed in the
binary distribution.

Native iOS Objects

The following objects are important for leveraging Mobile SDK functionality in your app:

•
• (Blocks)
•

 is the entry point for making REST requests, and is generally accessed as a
singleton, via .

You can easily create many standard canned queries from this object, such as:

You can then initiate the request with the following:

 (Blocks)
This is a category extension of the class that allows you to specify blocks as your
callback mechanism. For example:

146

Chapter 12: Reference

In addition to the canned REST requests provided by SFRestAPI, you can also create your
own:

Other Objects
Though you won't likely leverage these objects directly, their purpose in the SDK is worth
noting.

• —The intermediary between and the
 libraries. wraps the functionality of

communications, providing convenience methods for determining the type of HTTP post,
handling data transformations, and interpreting responses.

• —Tightly-coupled with , providing an abstraction
around functionality for automatically refreshing a session if any REST requests fail due
to session expiration.

Android Architecture
The SalesforceSDK is provided as a JAR file of java classes that works in conjunction with a
set of libraries and resource files in the directory.

Java Code
Java sources are under .

DescriptionPackage Name

SDK application classes (ForceApp)

OAuth support classes

Native implementations of the Salesforce Mobile
SDK PhoneGap plugin

Classes for REST requests/responses

147

Reference

DescriptionPackage Name

Security-related helper classes (e.g. passcode manager)

SmartStore and supporting classes

Activities (e.g. login)

Miscellaneous utility classes

Libraries
Libraries are under .

DescriptionLibrary Name

Open source mobile development framework;
used in hybrid applications (*)

Open source extension to SQLite that provides
transparent 256-bit AES encryptiong of database
files (**)

Native libaries required by sqlcipher (**)

Java libraries required by sqlcipher

(*) denotes files required for hybrid application.

(**) denotes files required for SmartStore.

Resources
Resources are under .

UseFile

Server picker screen

Login screen

Application icon

UseFileFolder

Server picker screen

148

Chapter 12: Reference

UseFileFolder

Login screen

Application icon

Login screen

Login screen

Login screen

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

149

Reference

UseFileFolder

Login screen (tablet)

Login screen (tablet)

Server picker screen

Login screen

Pin screen

Server picker screen

Login screen (tablet)

Login screen (tablet)

Server picker screen (tablet)

Server picker screen (tablet)

Add connection dialog

Login menu (phone)

Localized strings for login,
server picker and pin screens

Other strings (app name)

Styles (tablet)

Preferences for account used
by application

Plugin configuration file for
PhoneGap (*)

Java Code

Java sources are under .

150

Chapter 12: Reference

Java Code

DescriptionPackage Name

SDK application classes (ForceApp)

OAuth support classes

Native implementation of Salesforce Mobile
SDK PhoneGap plugin

Classes for REST requests/responses

Security-related helper classes (e.g. passcode
manager)

SmartStore and supporting classes

Activities (e.g. login)

Miscellaneous utility classes

DescriptionClass

Abstract subclass of application; you must supply a concrete
subclass in your project.

DescriptionClass

Service taking care of authentication

Generic HTTP access layer

Helper class for common OAuth2 requests

DescriptionClass

PhoneGap plugin for Salesforce OAuth

PhoneGap plugin for SmartStore

PhoneGap plugin to run javascript tests in container

151

Reference

DescriptionClass

Factory of RestClient, kicks off login flow if needed

Authenticated client to talk to a Force.com server

Force.com REST request wrapper

REST response wrapper

DescriptionClass

Helper class for encryption/decryption/hash computations

Inactivity timeout manager, kicks off passcode screen
if needed

DescriptionClass

Encrypted/regular sqlite database wrapper

Helper class to manage regular database creation and
version management

wrapper

Helper class to manage encrypted database creation and
version management

Searchable/secure store for JSON documents

DescriptionClass

Custom dialog allowing user to pick a different login host

Login screen

152

Chapter 12: Reference

DescriptionClass

Helper class to manage a WebView instance that is going
through the OAuth login process

Passcode (PIN) screen

Main activity for hybrid applications

WebView client used in hybrid applications

Class that allows references to resources defined outside the SDK

Choose login host screen

DescriptionClass

Used to register and receive events generated by the SDK
(used primarily in tests)

Observer of SDK events

Helper class for parsing URI's query strings

Libraries

Libraries are under .

DescriptionLibrary Name

Open source mobile development framework; used in
hybrid applications (*)

Open source extension to SQLite that provides
transparent 256-bit AES encryptiong of database files
(**)

Native libaries required by sqlcipher (**)

Java libarries required by sqlcipher

153

Reference

Resources

Resources are under .

UseFile

Server picker screen

Login screen

Application icon

UseFile

Login screen

Login screen

Login screen

UseFile

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

154

Chapter 12: Reference

UseFile

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

Login screen (tablet)

UseFile

Server picker screen

Login screen

Pin screen

Server picker screen

UseFile

Login screen (tablet)

Login screen (tablet)

Server picker screen (tablet)

Server picker screen (tablet)

UseFile

Add connection dialog

Login menu (phone)

155

Reference

UseFile

Localized strings for login, server picker, and
pin screens

Other strings (app name)

UseFile

Styles (tablet)

UseFile

Preferences for account used by application

Plugin configuration file for PhoneGap.
Required for hybrid.

156

Chapter 12: Reference

Glossary

A
Access Token

A value used by the consumer to gain access to protected resources on
behalf of the user, instead of using the user’s Salesforce credentials. The
access token is a session ID, and can be used directly.

Account
An account is an organization, company, or consumer that you want to
track—for example, a customer, partner, or competitor.

Activity, Chatter
An indicator of a person’s activity in Chatter. Chatter activity statistics
show the number of posts and comments a person has made and the
number of comments and likes received.

Administrator (System Administrator)
One or more individuals in your organization who can configure and
customize the application. Users assigned to the System Administrator
profile have administrator privileges.

Apex
Apex is a strongly typed, object-oriented programming language that
allows developers to execute flow and transaction control statements on
the Force.com platform server in conjunction with calls to the Force.com
API. Using syntax that looks like Java and acts like database stored
procedures, Apex enables developers to add business logic to most system
events, including button clicks, related record updates, and Visualforce
pages. Apex code can be initiated by Web service requests and from
triggers on objects.

Apex Controller
See Controller, Visualforce.

App
Short for “application.” A collection of components such as tabs, reports,
dashboards, and Visualforce pages that address a specific business need.
Salesforce provides standard apps such as Sales and Call Center. You
can customize the standard apps to match the way you work. In addition,

157

you can package an app and upload it to the AppExchange along with
related components such as custom fields, custom tabs, and custom
objects. Then, you can make the app available to other Salesforce users
from the AppExchange.

AppExchange
The AppExchange is a sharing interface from salesforce.com that allows
you to browse and share apps and services for the Force.com platform.

AppExchange Listing
An AppExchange listing is a description of your app or service on the
AppExchange. It is your primary marketing tool for promoting your
app or service to the AppExchange community.

AppExchange Publishing Organization
The AppExchange Publishing Organization (APO) is the master
organization that you as a partner use to publish listings on the
AppExchange. Child organizations where you develop applications can
be linked to your APO, thus tying your listings together under a single
provider entity to deliver a consistent message to customers.

AppExchange Security Review
The AppExchange Security Review ensures that an app is safe for
customers to install. Before an app can be listed publicly on
theAppExchange it must pass the AppExchange Security Review.
Providers are obligated to resubmit an app for security review whenever
the app is updated.

AppExchange Upgrades
Upgrading an app is the process of installing a newer version.

Application Programming Interface (API)
The interface that a computer system, library, or application provides
to allow other computer programs to request services from it and
exchange data.

Authorization Code
A short-lived token that represents the access granted by the end user.
The authorization code is used to obtain an access token and a refresh
token.

158

Glossary

C
Chatter Feed

A list of recent activities in Salesforce. Chatter feeds display:

• On the Chatter or Home tab, where you can see your posts, posts
from people you follow, and updates to records you follow, and posts
to groups you're a member of

• On profiles, where you can see posts made by the person whose
profile you're viewing

• On records, where you can see updates to the record you're viewing
• On Chatter groups, where you can see posts to the group you're

viewing

Chatter Mobile
A free mobile application that lets you collaborate in Chatter from your
mobile device. Use Chatter Mobile to post and comment in Chatter,
and receive updates about the people, records, and files you follow and
your groups.

Child Relationship
A relationship that has been defined on an sObject that references
another sObject as the “one” side of a one-to-many relationship. For
example, contacts, opportunities, and tasks have child relationships with
accounts.

See also sObject.

Class, Apex
A template or blueprint from which Apex objects are created. Classes
consist of other classes, user-defined methods, variables, exception types,
and static initialization code. In most cases, Apex classes are modeled
on their counterparts in Java.

Client App
An app that runs outside the Salesforce user interface and uses only the
Force.com API or Bulk API. It typically runs on a desktop or mobile
device. These apps treat the platform as a data source, using the
development model of whatever tool and platform for which they are
designed.

Cloud Computing
A model for software development and distribution based on the Internet.
The technology infrastructure for a service, including data, is hosted on
the Internet. This allows consumers to develop and use services with

159

Glossary

browsers or other thin clients instead of investing in hardware, software,
or maintenance.

Component, Visualforce
Something that can be added to a Visualforce page with a set of tags,
for example, . Visualforce includes a number of
standard components, or you can create your own custom components.

Component Reference, Visualforce
A description of the standard and custom Visualforce components that
are available in your organization. You can access the component library
from the development footer of any Visualforce page or the Visualforce
Developer's Guide.

Consumer Key
A value used by the consumer to identify itself to Salesforce. Referred
to as .

Controller, Visualforce
An Apex class that provides a Visualforce page with the data and business
logic it needs to run. Visualforce pages can use the standard controllers
that come by default with every standard or custom object, or they can
use custom controllers.

Custom Field
A field that can be added in addition to the standard fields to customize
Salesforce for your organization’s needs.

Custom Object
Custom records that allow you to store information unique to your
organization.

D
Database

An organized collection of information. The underlying architecture of
the Force.com platform includes a database where your data is stored.

Dependent Field
Any custom picklist or multi-select picklist field that displays available
values based on the value selected in its corresponding controlling field.

160

Glossary

Developer Edition
A free, fully-functional Salesforce organization designed for developers
to extend, integrate, and develop with the Force.com platform. Developer
Edition accounts are available on developer.force.com.

Developer Force
The Developer Force website at developer.force.com provides a full
range of resources for platform developers, including sample code,
toolkits, an online developer community, and the ability to obtain limited
Force.com platform environments.

Development Environment
A Salesforce organization where you can make configuration changes
that will not affect users on the production organization. There are two
kinds of development environments, sandboxes and Developer Edition
organizations.

Dynamic Visualforce Binding
A way of writing generic Visualforce pages that display information
about records without necessarily knowing which fields to show. In other
words, fields on the page are determined at runtime, rather than compile
time.

E
Enterprise Edition

A Salesforce edition designed for larger, more complex businesses.

Enterprise WSDL
A strongly-typed WSDL for customers who want to build an integration
with their Salesforce organization only, or for partners who are using
tools like Tibco or webMethods to build integrations that require strong
typecasting. The downside of the Enterprise WSDL is that it only works
with the schema of a single Salesforce organization because it is bound
to all of the unique objects and fields that exist in that organization's
data model.

F
Feed Attachment, Chatter

A feed attachment is a file or link that is attached to a post in a Chatter
feed.

161

Glossary

http://developer.force.com
http://developer.force.com

Feed Filter, Chatter
Feed filters display a subset of posts in your Chatter feed on the Chatter
tab.

Feed Tracking, Chatter
Administrator settings that determine which records can be followed
and which fields can be tracked in Chatter feeds. Enabling an object for
feed tracking allows people to follow records of that object type. Enabling
fields for feed tracking allows users to see updates on the Chatter feed
when those fields are changed on records they follow.

Field
A part of an object that holds a specific piece of information, such as a
text or currency value.

Field Dependency
A filter that allows you to change the contents of a picklist based on the
value of another field.

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or
editable for users. Available in Enterprise, Unlimited, and Developer
Editions only.

Field Sets
A field set is a grouping of fields. For example, you could have a field
set that contains fields describing a user's first name, middle name, last
name, and business title. Field sets can be referenced on Visualforce
pages dynamically. If the page is added to a managed package,
administrators can add, remove, or reorder fields in a field set to modify
the fields presented on the Visualforce page without modifying any code.

Force.com
The salesforce.com platform for building applications in the cloud.
Force.com combines a powerful user interface, operating system, and
database to allow you to customize and deploy applications in the cloud
for your entire enterprise.

Force.com App Menu
A menu that enables users to switch between customizable applications
(or “apps”) with a single click. The Force.com app menu displays at the
top of every page in the user interface.

162

Glossary

Force.com IDE
An Eclipse plug-in that allows developers to manage, author, debug and
deploy Force.com applications in the Eclipse development environment.

Web Services API
A Web services application programming interface that provides access
to your Salesforce organization's information. See also SOAP API and
Bulk API.

G
Group

A groups is a set of users. Groups can contain individual users, other
groups, or the users in a role. Groups can be used to help define sharing
access to data or to specify which data to synchronize when using
Connect for Outlook or Connect for Lotus Notes.

Users can define their own personal groups. Administrators can create
public groups for use by everyone in the organization.

Group Edition
A product designed for small businesses and workgroups with a limited
number of users.

I
Import Wizard

A tool for importing data into your Salesforce organization, accessible
from Setup.

Instance
The cluster of software and hardware represented as a single logical
server that hosts an organization's data and runs their applications. The
Force.com platform runs on multiple instances, but data for any single
organization is always consolidated on a single instance.

Integration User
A Salesforce user defined solely for client apps or integrations. Also
referred to as the logged-in user in a SOAP API context.

163

Glossary

M
Managed Package

A collection of application components that is posted as a unit on the
AppExchange and associated with a namespace and possibly a License
Management Organization. To support upgrades, a package must be
managed. An organization can create a single managed package that can
be downloaded and installed by many different organizations. Managed
packages differ from unmanaged packages by having some locked
components, allowing the managed package to be upgraded later.
Unmanaged packages do not include locked components and cannot be
upgraded. In addition, managed packages obfuscate certain components
(like Apex) on subscribing organizations to protect the intellectual
property of the developer.

Metadata
Information about the structure, appearance, and functionality of an
organization and any of its parts. Force.com uses XML to describe
metadata.

Metadata-Driven Development
An app development model that allows apps to be defined as declarative
“blueprints,” with no code required. Apps built on the platform—their
data models, objects, forms, workflows, and more—are defined by
metadata.

Metadata WSDL
A WSDL for users who want to use the Force.com Metadata API calls.

MVC (Model-View-Controller)
A design paradigm that deconstructs applications into components that
represent data (the model), ways of displaying that data in a user interface
(the view), and ways of manipulating that data with business logic (the
controller).

N
Namespace

In a packaging context, a one- to 15-character alphanumeric identifier
that distinguishes your package and its contents from packages of other
developers onAppExchange, similar to a domain name. Salesforce
automatically prepends your namespace prefix, followed by two
underscores (“__”), to all unique component names in your Salesforce
organization.

164

Glossary

O
Object

An object allows you to store information in your Salesforce organization.
The object is the overall definition of the type of information you are
storing. For example, the case object allow you to store information
regarding customer inquiries. For each object, your organization will
have multiple records that store the information about specific instances
of that type of data. For example, you might have a case record to store
the information about Joe Smith's training inquiry and another case
record to store the information about Mary Johnson's configuration
issue.

Organization
A deployment of Salesforce with a defined set of licensed users. An
organization is the virtual space provided to an individual customer of
salesforce.com. Your organization includes all of your data and
applications, and is separate from all other organizations.

Organization-Wide Defaults
Settings that allow you to specify the baseline level of data access that a
user has in your organization. For example, you can set organization-wide
defaults so that any user can see any record of a particular object that is
enabled via their object permissions, but they need extra permissions to
edit one.

P
Package

A group of Force.com components and applications that are made
available to other organizations through the AppExchange. You use
packages to bundle an app along with any related components so that
you can upload them to AppExchange together.

Permission
A permission is a setting that allows a user to perform certain functions
in Salesforce. Permissions can be enabled in permission sets and profiles.
Examples of permissions include the “Edit” permission on a custom
object and the “Modify All Data” permission.

Permission Set
A collection of permissions and settings that gives users access to specific
tools and functions.

165

Glossary

Production Organization
A Salesforce organization that has live users accessing data.

Profile
Defines a user’s permission to perform different functions within
Salesforce. For example, the Solution Manager profile gives a user access
to create, edit, and delete solutions.

R
Record

A single instance of a Salesforce object. For example, “John Jones” might
be the name of a contact record.

Record-Level Security
A method of controlling data in which you can allow a particular user
to view and edit an object, but then restrict the records that the user is
allowed to see.

Refresh Token
A token used by the consumer to obtain a new access token, without
having the end user approve the access again.

Remote Access Application
A remote access application is an application external to Salesforce that
uses the OAuth protocol to verify both the Salesforce user and the
external application.

REST API
REST is a simple, lightweight API that uses HTTP GET, POST and
PUT methods to update resources on the server.

S
IdeaExchange

A forum where salesforce.com customers can suggest new product
concepts, promote favorite enhancements, interact with product managers
and other customers, and preview what salesforce.com is planning to
deliver in future releases. Visit IdeaExchange at ideas.salesforce.com.

Salesforce SOA (Service-Oriented Architecture)
A powerful capability of Force.com that allows you to make calls to
external Web services from within Apex.

166

Glossary

http://ideas.salesforce.com/

Sandbox Organization
A nearly identical copy of a Salesforce production organization. You can
create multiple sandboxes in separate environments for a variety of
purposes, such as testing and training, without compromising the data
and applications in your production environment.

Session ID
An authentication token that is returned when a user successfully logs
in to Salesforce. The Session ID prevents a user from having to log in
again every time he or she wants to perform another action in Salesforce.
Different from a record ID or Salesforce ID, which are terms for the
unique ID of a Salesforce record.

Session Timeout
The period of time after login before a user is automatically logged out.
Sessions expire automatically after a predetermined length of inactivity,
which can be configured in Salesforce by clicking > Setup
> Security Controls. The default is 120 minutes (two hours). The
inactivity timer is reset to zero if a user takes an action in the Web
interface or makes an API call.

Setup
An administration area where you can customize and define Force.com
applications. Access Setup through the > Setup link at
the top of Salesforce pages.

Sharing
Allowing other users to view or edit information you own. There are
different ways to share data:

• Sharing Model—defines the default organization-wide access levels
that users have to each other’s information and whether to use the
hierarchies when determining access to data.

• Role Hierarchy—defines different levels of users such that users at
higher levels can view and edit information owned by or shared with
users beneath them in the role hierarchy, regardless of the
organization-wide sharing model settings.

• Sharing Rules—allow an administrator to specify that all information
created by users within a given group or role is automatically shared
to the members of another group or role.

• Manual Sharing—allows individual users to share records with other
users or groups.

167

Glossary

• Apex-Managed Sharing—enables developers to programmatically
manipulate sharing to support their application’s behavior. See
Apex-Managed Sharing.

Sharing Model
Behavior defined by your administrator that determines default access
by users to different types of records.

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

SOQL (Salesforce Object Query Language)
A query language that allows you to construct simple but powerful query
strings and to specify the criteria that should be used to select data from
the Force.com database.

SOSL (Salesforce Object Search Language)
A query language that allows you to perform text-based searches using
the Force.com API.

Standard Object
A built-in object included with the Force.com platform. You can also
build custom objects to store information that is unique to your app.

System Log
Part of the Developer Console, a separate window console that can be
used for debugging code snippets. Enter the code you want to test at
the bottom of the window and click Execute. The body of the System
Log displays system resource information, such as how long a line took
to execute or how many database calls were made. If the code did not
run to completion, the console also displays debugging information.

T
Test Method

An Apex class method that verifies whether a particular piece of code
is working properly. Test methods take no arguments, commit no data
to the database, and can be executed by the system method
either through the command line or in an Apex IDE, such as the
Force.com IDE.

Translation Workbench
The Translation Workbench lets you specify languages you want to
translate, assign translators to languages, create translations for

168

Glossary

customizations you’ve made to your Salesforce organization, and override
labels and translations from managed packages. Everything from custom
picklist values to custom fields can be translated so your global users can
use all of Salesforce in their language.

Trigger
A piece of Apex that executes before or after records of a particular type
are inserted, updated, or deleted from the database. Every trigger runs
with a set of context variables that provide access to the records that
caused the trigger to fire, and all triggers run in bulk mode—that is, they
process several records at once, rather than just one record at a time.

U
Unit Test

A unit is the smallest testable part of an application, usually a method.
A unit test operates on that piece of code to make sure it works correctly.
See also Test Method.

Unlimited Edition
Unlimited Edition is salesforce.com's flagship solution for maximizing
CRM success and extending that success across the entire enterprise
through the Force.com platform.

Unmanaged Package
A package that cannot be upgraded or controlled by its developer.

URL (Uniform Resource Locator)
The global address of a website, document, or other resource on the
Internet. For example, http://www.salesforce.com.

V
Visualforce

A simple, tag-based markup language that allows developers to easily
define custom pages and components for apps built on the platform.
Each tag corresponds to a coarse or fine-grained component, such as a
section of a page, a related list, or a field. The components can either
be controlled by the same logic that is used in standard Salesforce pages,
or developers can associate their own logic with a controller written in
Apex.

169

Glossary

W
Web Service

A mechanism by which two applications can easily exchange data over
the Internet, even if they run on different platforms, are written in
different languages, or are geographically remote from each other.

WebService Method
An Apex class method or variable that can be used by external systems,
like a mash-up with a third-party application. Web service methods
must be defined in a global class.

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive
from a Web service. Your development environment's SOAP client uses
the Salesforce Enterprise WSDL or Partner WSDL to communicate
with Salesforce using the SOAP API.

X
XML (Extensible Markup Language)

A markup language that enables the sharing and transportation of
structured data. All Force.com components that are retrieved or deployed
through the Metadata API are represented by XML definitions.

170

Glossary

Index

A

About 6
access control in Connected Apps 42
administrator tasks for Connected Apps 41
Advanced topics 117
Android architecture 147, 150, 153–154
Android development 51, 54–55
Android hybrid project 60
Android hybrid sample app 77
Android NFC 128
Android project 53
Android requirements 18, 52
Android sample 77
Android sample app 54, 56
Ant version 58
API, social 70
App component 80–81
AppExchange 135–140
Apple Safari 19
Architecture of mobile Visualforce 80
Architecture, Android 147, 150, 153–154
Audience 6
Authentication 23
Authentication flow 24
Authorization 45

B

Bar code scanning 124
BLOBs 106–107, 116
Blogs 7
Book version 6
Browser compatibility 19

C

Caching data offline 105
Callback URL 33
callback URL in Connected Apps 38

Camera 118
Chapter organization 6
Chatter 70
Chrome browser 19
Client-side detection 14
Collaboration 70
Comments and suggestions 7
Comparison of development scenarios 10
Comparison of mobile and PC 1
Connected apps 23, 35–36
Consumer key 33
Consumer secret 33
contact information for Connected Apps 37
Container 57
Content component 80, 82
Coordinates 127
Create Visualforce tablet page 85
creating a Connected App 36
Creating Visualforce components 88
Cross-device strategy 14

D

Database.com 18–19
Delete soups 108, 110, 112–113
deleting a Connected App 41
Describe global 144
Detail component 80, 83
Detail page 68
Developer Edition 18
developer tasks for Connected Apps 36
Developer.force.com 18
Developing HTML apps 101
Developing HTML5 apps 102
Development 18
Development environments 18
Development requirements, Android 52
Development scenarios 10
Development, Android 51, 54–55
Development, hybrid 57

171

Index

Device access 117
Device camera 118
Distributing apps 135
Dreamforce app 5

E

Eating our own dogfood 5
Enterprise identity 3
errors in Connected Apps 46

F

Feed 70
Feedback 7
Firefox browser 19
Flow 24, 26
Footer component 80, 82–83
Force.com 18
Force.com for Touch 3

G

Geolocation 3, 127
Getting started 21
GitHub 7
Google Chrome 19

H

Header component 80, 82
HTML5 101–102
HTML5 development 10, 14, 21, 117
Hybrid development 10, 14, 21, 57–60, 64, 68,
117–118
Hybrid iOS sample 76
Hybrid offline development 106
Hybrid project for Android 60
Hybrid project for iOS 59
Hybrid quick start 58
Hybrid requirements 58
Hybrid sample app 60
Hybrid Visualforce development 79–80, 84–85,
88

I

Identity services 3
Identity URLs 27
installing a Connected App 41
Installing the SDK 48, 53
Installing Visualforce components 84
integrating Connected Apps with mobile apps 39
integrating Connected Apps with Salesforce 38
Internet Explorer 19
Inventory 64, 68
iOS application, creating 48, 50
iOS architecture 48, 52, 145–146
iOS development 47
iOS hybrid project 59
iOS Hybrid sample app 76
iOS requirements 18
iOS sample app 49–50
iOS Xcode template 49
IP ranges 35–36
IP ranges with Connected Apps 39
IP restrictions for Connected Apps 42
ISV 137–139

J

JavaScript 57, 102

L

List component 80, 83
List objects 144
List page 64
List resources 144
Local storage 106–107
localStorage 116
Location 127
Location services 3
logo images in Connected Apps 37

M

managing a Connected App 42
Message boards 7
Metadata 144

172

Index

Mobile components for Visualforce 79–80, 84–85,
88
Mobile Conatiner 3
Mobile container 57
Mobile Container 48
Mobile development 9
Mobile Development 48
Mobile inventory app 64, 68
Mobile policies 35–36
Mobile policy 3
Mobile SDK 3
Mobile SDK installation 48, 53
Mobile SDK Repository 7
Mobile SDK Workbook 21
MobileComponents.git 84–85
Mock SmartStore 107
Mozilla Firefox 19

N

Native development 10, 14, 21, 117
Native iOS application 48, 50
Native iOS architecture 48, 52, 145–146
Native iOS development 47
Native iOS project template 49
Navigation component 81
Navigation Component 80
Near-field communication 128
New features 7
NFC 128

O

OAuth 24, 26
OAuth tokens, revoking 32
OAuth2 23–24
Offline storage 105–106
Online documentation 6
Open mobile components 79–80
Organization of this guide 6

P

Page component 80, 82
Parameters, scope 26
Partner Program 137–139

Password 144
PIN protection 45
Preface 1
Prerequisites 18
Printed date 6
Project, Android 53
publishing Connected Apps 40

Q

QR scanning 124
Query 144
Querying a soup 108, 110, 112–113
querySpec 108, 110, 112–113
Quick start 21
Quick start, hybrid 58

R

Reference documentation 143
Refresh token flow 26
registerSoup 108, 110, 112–113
Release notes 7
Releases 7
Remote access 23
Remote access application 33
Requirements, hybrid 58
Responsive design 5, 14
REST 144
REST Resources 144
RestAPIExplorer 50
Restricting user access 35–36
Revoking tokens 32

S

Safari browser 19
Salesforce Touch Platform 3, 9
Sample app, Android 54, 56
Sample app, iOS 50
Sample hybrid app 60
Sample iOS app 49
Scanning 124
Scope parameters 26
SDK prerequisites 18
Search 144 173

Index

Secure storage 105
Security 23
Security review 140
Security, PIN 45
Send feedback 7
Server-side detection 14
Sign up 18–19
SmartStore 105–106
SmartStore extensions 106–107, 116
SmartStore functions 108, 110, 112–113
SObject information 144
Social API 70
Social collaboration 70
Soups 108, 110, 112–113
Source code 7
specifying basic information for Connected Apps
37
SplitView template 81
SplitView Template 80
start URL in Connected Apps 42
Store 135–136
storing files 116
Storing files 106–107
Supported browsers 19

T

Tablet page in Visualforce 85
Tokens, revoking 32

U

uninstalling a Connected App 45
updating a Connected App 41

upgrading a Connected App 46
upsertSoupEntries 108, 110, 112–113
URLs, indentity 27
User-agent flow 24

V

Version 144
versioning a Connected App 41
Versions 6–7
Visualforce 79–80
Visualforce App component 81
Visualforce archtiecture 80
Visualforce components 79–80
Visualforce Content component 82
Visualforce Detail component 83
Visualforce Footer component 83
Visualforce Header component 82
Visualforce List component 83
Visualforce Navigation component 81
Visualforce Page component 82
Visualforce SplitView template 81

W

Warehouse schema 64, 68
What’s new in this release 7
whitelisting IP ranges in Connected Apps 39
Workbook, Mobile SDK 21

X

Xcode project 48, 50
Xcode project template 49

174

Index

	Preface
	The Salesforce Touch Platform
	Force.com for Touch
	Mobile Container (Salesforce Mobile SDK 1.3)
	Identity

	The Dreamforce App
	About This Book
	Chapter Contents
	Version
	Sending Feedback

	Keeping Up to Date
	Mobile SDK GitHub Repository

	Introduction to Mobile Development on the Salesforce Touch Platform
	About Native, HTML5, and Hybrid Development
	Multi-Device Strategy
	Development Prerequisites
	Choosing Between Database.com and Force.com
	Sign Up for Force.com
	Sign Up for Database.com

	Supported Browsers
	Enough Talk, I’m Ready

	Authentication, Security, and Identity in Mobile Apps
	OAuth2 Authentication Flow
	OAuth 2.0 User-Agent Flow
	OAuth 2.0 Refresh Token Flow
	Scope Parameter Values
	Using Identity URLs
	Revoking OAuth Tokens

	Creating a Remote Access Application

	Connected Apps
	Developing and Managing Connected Apps
	Developer Tasks
	Creating a Connected App
	Connected App Basic Information
	Connected App API Integration
	Connected App Mobile Integration
	Connected App IP Ranges

	Publishing a Connected App
	Deleting a Connected App
	Updating a Connected App

	Administrator Tasks
	Installing a Connected App
	Managing a Connected App
	About PIN Security
	Uninstalling a Connected App
	Upgrading a Connected App
	Connected App Error Codes

	Native iOS Development
	iOS Native Quick Start
	Native iOS Requirements
	Installing the Mobile SDK for iOS
	Creating a New Native iOS App in Xcode
	Running the Xcode Project Template App

	Using the Mobile SDK in an Existing Project
	iOS RestAPIExplorer Sample Application

	Native Android Development
	Android Native Quick Start
	Native Android Requirements
	Installing the Mobile SDK for Android
	Creating a New Android Project
	Android Template Application

	Setting Up Projects in Eclipse
	Android Project Files

	Cleaning and Building From Eclipse
	Android RestExplorer Sample Application

	Hybrid Development
	Hybrid Apps Quick Start
	Hybrid Apps Requirements
	Creating a Hybrid App Project for iOS
	Creating a Hybrid Project for Android

	Running the Sample Hybrid App
	How the Sample App Works

	Create a Mobile Page to List Information
	Create a Mobile Page for Detailed Information
	Support Social Collaboration with Chatter
	Modify the App's View (index.html)
	Modify the App's Controller (inline.js)
	Try Out the App

	iOS Hybrid Sample Application
	Android Hybrid Sample Application

	Hybrid Development with Mobile Components for Visualforce
	Mobile Components for VisualforceArchitecture
	Visualforce Mobile Open Components
	Visualforce App Component
	Visualforce Navigation Component
	Visualforce SplitView Template
	Visualforce Page Component
	Visualforce Header Component
	Visualforce Content Component
	Visualforce List Component
	Visualforce Detail Component
	Visualforce Footer Component

	Installing the Components
	Creating Your First Tablet Page
	Easy Integration

	Creating a Mobile Component for Visualforce

	HTML5 Development
	HTML5 Development Requirements
	Accessing Data Using JavaScript

	Securely Storing Data Offline
	Accessing SmartStore in Hybrid Apps
	Offline Hybrid Development
	Using the Mock SmartStore
	Registering a Soup
	Retrieving Data From a Soup
	Working With Cursors
	Manipulating Data
	SmartStore Extensions

	Advanced Topics
	Customize the Hybrid Sample App to Use the Camera
	Run the App
	How the Demo App Works

	Bar Code and QR Code Scanning
	Geolocation and Mobile Apps
	Utilizing Near Field Communication (NFC) in Hybrid Apps
	Requirements
	Force.com and NFC Mobile Application Architecture
	Installing the NFC PhoneGap Plugin
	Invoking the NFC Plugin via JavaScript
	Upserting the Information into Force.com with Mobile SDK
	Wrap Up - The Internet of Things and the Future of NFC

	Distributing Mobile AppExchange Apps
	AppExchange for Mobile: Enterprise Mobile Apps
	Joining the AppExchange Partner Program
	Get a Publishing Org
	Create a Provider Profile
	The AppExchange Security Review

	Reference
	REST API Resources
	iOS Architecture
	Native iOS Objects

	Android Architecture
	Java Code
	Libraries
	Resources

	Glossary
	Index

