
Salesforce1 Mobile 
Security White Paper
Revised: April 2014



Table of Contents

Introduction

Salesforce1 Architecture Overview

Authorization and Permissions

Communication Security

Authentication

OAuth Pairing

OAuth Access Token Storage

OAuth Refresh Token Storage

Single Sign On (SSO)

Federated Authentication Support

Delegated Authentication Support

Certificates and Keys

Identity Providers and Service Providers

Inactivity Lock

Passcode Strength and Storage

Session Token

Restrict Device Platforms

Storage Security

Local Data Protection

Feed Database Encryption

Files and Attachments

Offline Sync

Remote Wipe

Notes



Introduction
This document describes the Salesforce1 mobile application (Android and iOS downloadable 
application, and the mobile browser application), and addresses security concerns an enterprise 
may have when evaluating Salesforce1 for their organization.

This document does not cover Salesforce Classic, Mobile Dashboards, Touch applications, or 
BlackBerry.

Salesforce1 Architecture Overview
Salesforce1 uses the Force.com platform, with all application logic and database 
storage provided by salesforce.com's hosted application servers. The Salesforce1 solution 
consists of the Salesforce application server, and either the client application or mobile browser 
on the handheld mobile device. Supported operating systems are Apple iOS and Android.

The Salesforce1 client application communicates across the wireless network to display a 
subset of the user’s data on the handheld device. The client application or browser on the 
handheld device pulls feed data on demand to the device. This architecture provides a very high 
quality of service and a productive working experience for the end user. 

Salesforce1 provides a sandboxed environment for a user to access Salesforce data from a 
mobile device, while an org administrator can manage user access, even if the mobile device 
belongs to the user. 

Authorization and Permissions
Access to Salesforce1 is “default on” and does not require an administrator to grant permission 
to use the application. Administrators can edit profile and permission sets to revoke Salesforce1 
access to any user through the administration console . The Salesforce1 application provides 
access to data and functions based upon the core permissions and rights defined for each user 
by their Salesforce administrator. Mobile users are never able to view or access more than their 
permissions allow.

Communication Security
Salesforce1 uses SSL/TLS for Over-The-Air (OTA) communication encryption. All Salesforce 
OAuth authorization endpoints are HTTPS only. Communication requests over HTTP are 
denied by Salesforce servers, unless the org administrator opts out of and unchecks “Require 
secure connections (HTTPS)” in the administration console.



Authentication
All components of Salesforce1 require user authentication at the point and time of access. 
Salesforce1 utilizes OAuth2.0 for authentication through username/password or SSO (single 
sign-on) credentials.

OAuth Pairing
During the initial login, the device is uniquely identified and paired with the mobile user’s 
account using the OAuth 2.0 protocol (http://tools.ietf.org/html/rfc6749). All requests to the 
Salesforce service are made using the OAuth token established through the pairing created 
during activation. 

After initial login, there is no exchange of a password in the communication between the mobile 
client and the Salesforce server. For this reason, the Salesforce password is not stored on the 
device and is not required even when the password is changed or has expired.

A user obtains an access and refresh token after successfully completing the OAuth 2.0 web 
server authentication. A user can use the refresh token to get a new access token (session ID). 
Upon logout, the OAuth access and refresh tokens are revoked, and the user set passcode 
is wiped (if passcode is enabled by org administrator). The user is re-prompted to enter the 
username/password and reset the passcode.

The org administrator can revoke a refresh token the first time a user uses the app, every time a 
user uses the app, or on set a schedule (hourly, daily, or monthly) to force a user to re-enter the 
username/password and reset the passcode. The default token expiration schedule is set at 2 
hours, but can be as short as 15 minutes.

OAuth Access Token Storage
● iOS Downloadable App: AES-128 with a 256 bit key consisting of a SHA-256 hashed 

concatenation of a generated RFC 4122 Universally Unique Identifier (persisted 
to the encrypted keychain) and a Base64 encoded SHA-256 hash of the device 
passcode (this 4 to 8 digit non-alphanumeric passcode requirement is enabled by 
the org administrator and is set by the client). Token is stored in the keychain using 
kSecAttrAccessibleWhenUnlockedThisDeviceOnly to preserve the session for the user, 
because iOS may terminate the application.

● Android Downloadable App: AES-256 encrypted with key derived from device unique 
Android ID and static string. Token is stored in Android’s AccountManager and can’t be 
accessed unless the device is rooted. If the device is rooted, it’s possible to retrieve the 
encrypted Android ID and static string from the SQLCipher-encrypted SQLite database, 
but it can’t be decrypted without the key. The SQLCipher-encrypted key is derived from 
the passcode, if enabled by org administrator, or UUID (universally unique identifier) if 
the passcode isn’t enabled.

http://tools.ietf.org/html/rfc6749


● Mobile Browser App: Access token is never stored on the mobile device. The mobile 
browser app requires a user to re-enter the username/password to obtain a new access 
token.

OAuth Refresh Token Storage
● iOS Downloadable App: AES-128 with a 256 bit key consisting of a SHA-256 hashed 

concatenation of a generated RFC 4122 Universally Unique Identifier (persisted 
to the encrypted keychain) and a Base64 encoded SHA-256 hash of the device 
passcode (this 4 to 8 digit non-alphanumeric passcode requirement is enabled by 
the org administrator and is set by the client). Token is stored in the keychain using 
kSecAttrAccessibleWhenUnlockedThisDeviceOnly.

● Android Downloadable App: AES-256 encrypted with key derived from device unique 
Android ID and static string. Token is stored in Android’s AccountManager and can’t be 
accessed unless the device is rooted. If the device is rooted, it’s possible to retrieve the 
encrypted Android ID and static string from the SQLCipher encrypted SQLite database, 
but it can’t be decrypted without the key. The SQLCipher-encrypted key is derived from 
the passcode, if enabled by org administrator, or UUID (universally unique identifier) if 
the passcode isn’t enabled.

● Mobile Browser App: The web server authentication flow for the mobile browser app 
doesn’t use or store a refresh token on the device. The mobile browser app requires a 
user to re-enter the username/password to obtain a new access token.

Single Sign On (SSO)
Single sign-on is a process that allows network users to access all authorized network 
resources without having to log in separately to each resource. Single sign-on allows orgs to 
validate username/password against their user database or other client applications rather than 
having separate username/password managed by Salesforce.

Federated Authentication Support
When federated authentication is enabled, Salesforce doesn’t validate a user’s password. 
Instead, Salesforce verifies an assertion in the HTTP POST request, and allows single sign-on if 
the assertion is true. This is the default form of single sign-on.

See “Single Sign-On for Desktop and Mobile Applications using SAML and OAuth” for more 
information.

Delegated Authentication Support
When delegated authentication is enabled, Salesforce does not validate a user’s password. 
Instead, Salesforce makes a Web services call to a customer org to establish authentication 

http://wiki.developerforce.com/page/Single_Sign-On_for_Desktop_and_Mobile_Applications_using_SAML_and_OAuth


credentials for the user. Administrators must request delegated authentication support be 
enabled by Salesforce.

See “Understanding Delegated Authentication Single Sign-On” for more information.

Certificates and Keys
Salesforce certificates and key pairs are used for signatures that verify a request is coming from 
a customer org. They are used for authenticated SSL communications with an external web 
site, or when using a customer org as an Identity Provider. Customers only need to generate 
a Salesforce certificate and key pair if they’re working with an external website that wants 
verification that a request is coming from a Salesforce org.

Salesforce offers two types of certificates:

● Self-Signed: A self-signed certificate is signed by Salesforce. Not all external websites 
accept self-signed certificates.

● CA-Signed: A CA-signed certificate is signed by an external certificate authority (CA). 
Most external websites accept CA-signed certificates. Customers must first generate 
the certificate signing request to send to a CA, and then import the signed version of the 
certificate before they can use it.

See “About Salesforce Certificates and Keys” for more information.

Identity Providers and Service Providers
An identity provider is a trusted provider that enables a customer to use single sign-on to access 
other websites. A service provider is a website that hosts applications. Customers can enable 
Salesforce as an identity provider, then define one or more service providers, so their users can 
access other applications directly from Salesforce using single sign-on. This can be a great help 
to users: instead of having to remember many passwords, they will only have to remember one. 

Salesforce is automatically enabled as an identity provider when a domain is created. After a 
domain is deployed, administrators can add or change identity providers and increase security 
for their organization by customizing their domain’s login policy.

Enabling Salesforce as an identity provider requires a Salesforce certificate and key pair that 
is signed by an external certificate authority (CA-signed) or self-signed. If customers haven’t 
generated a Salesforce certificate and key pair, one is automatically created for them when 
they enable Salesforce as an identity provider. They also have the option of picking an already 
generated certificate, or creating one.

Salesforce uses the SAML 2.0 standard for single sign-on and generates SAML assertions 
when configured as an identity provider.

https://na1.salesforce.com/help/doc/en/sso_delauthentication.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=security_keys_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=domain_name_setup.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=security_keys_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=security_keys_about.htm&language=en_US


See “About Identity Providers and Service Providers” for more information.

Inactivity Lock
Upon initial activation, Salesforce1 prompts the user to create an arbitrary passcode (if 
required by the org administrator), which is used to unlock the application after reboot, or an 
administrator defined period of inactivity (1, 5, 10, or 30 minutes).

The passcode lock protects lost or stolen devices that may have their wireless connection 
disabled, and can’t have their OAuth token revoked. 

Passcode Strength and Storage
● iOS Downloadable App: 4 to 8 digits (non-alphanumeric). A Base64 encoded 

SHA-256 hash of the passcode is stored in the secure keychain using 
kSecAttrAccessibleWhenUnlockedThisDeviceOnly for passcode validation and a 
component of the AES-128 encryption key for various encryption processes.

● Android Downloadable App: 5 or more alphanumeric characters. AES-256 encrypted 
with key derived from device unique Android ID and static string. Token is stored in 
Android’s AccountManager and can’t be accessed unless the device is rooted. If the 
device is rooted, it’s possible to retrieve the encrypted Android ID and static string 
from the SQLCipher encrypted SQLite database, but it can’t be decrypted without the 
key. The SQLCipher-encrypted key is derived from the passcode, if enabled by org 
administrator, or UUID (universally unique identifier) if the passcode isn’t enabled.

● Mobile Browser App: Users are prompted to re-enter username/password after 30 
minutes of inactivity, or if they navigate to a different site or close the mobile browser.

Salesforce1 guards against brute force attacks by erasing all locally stored data after 10 failed 
attempts at entering the passcode. Reactivation is required to continue using the application.

Session Token
Session token is only used for Visualforce pages .It is derived from the OAuth Access Token 
and is scoped to the Visualforce page. The UIWebView/Webview stores it in the cache.

Restrict Device Platforms
Administrators can restrict Salesforce1 app access through the administration console by 
blocking the Salesforce1 Connected App for either platform (iOS or Android).

Administrators can also enable/disable the mobile browser app through administration console. 
If the mobile browser app is disabled, the user is taken to the full Salesforce site from the mobile 
browser.

https://help.salesforce.com/apex/HTViewHelpDoc?id=identity_provider_about.htm&language=en_US


Storage Security
A mobile device may be lost or stolen at any time. Since mobile devices are small and designed 
to be highly portable, they may not remain under the physical control of a trusted person. 
Therefore, Salesforce1 provides methods to secure the device data if it passes out of control of 
the user or the user’s organization.

Salesforce1 has multiple levels of security at the handheld device level. First, device vendors 
provide the ability to enforce OS-level password access restrictions on any device applications 
or data. Users must be required to use the device protection in accordance with the owning 
enterprise’s security policy. If the device is locked by a strong password, it is difficult for 
unauthorized persons to do anything with it.

Local Data Protection
Salesforce1 does not currently support any external memory. The data stored locally on the 
device is saved in the device’s embedded memory and never on an external memory card.
 
Mobile platforms don’t generally allow data extraction from a local database. In order to make 
the system more secure, Salesforce1 does provide encryption on the device database.

Feed Database Encryption
Feeds are made up of feed items. A feed item is a piece of information posted by a user (for 
example, a poll) or by an automated process (for example, when a tracked field is updated on a 
record).

● iOS Downloadable App: Feed data is stored using Core Data, and encrypted using 
NSFileProtectionComplete. NSFileProtectionComplete dictates how passcodes are 
exposed internally to access the feed data. The passcode for the feed data is removed 
from the local keychain when Salesforce1 is closed or running in the background. 
Salesforce1 feed data is only accessible when the app is open and in the foreground. 
If an OS passcode isn’t set or if the device screen is unlocked, the encrypted feed data 
can be compromised by brute force attacks. 

Additionally, the feed data storage is time-based. The feed cache purges items if the 
time last viewed is greater than one week, unless the remainder of feed items after 
purging is less than 25 items. Also feeds that have more than 500 items will have their 
excess items removed.

● Android Downloadable App: Feed data is stored in a SQLCipher-encrypted SQLite 
database with AES-256 encrypted in CBC (cipher-block chaining) mode with appropriate 
IV (initialization vector) and PKCS #5 padding.



● Mobile Browser App: The feed cache is invalidated on client logout, navigation to a 
different site, or when closing the mobile browser.

Files and Attachments
A file or attachment is any file that a user uploads, shares, or attaches to posts, comments, or 
records. All file types are supported: documents, presentations, spreadsheets, PDFs, images, 
audio files, and video files.

● iOS Downloadable App: Files and attachments are stored on the device’s file system 
in a double-encrypted format. We use the device’s hardware encryption capability 
to encrypt the files while the device is locked and in addition we perform our own 
encryption using AES algorithm (128 bit block size and 256 bit key size). When the file 
is being viewed, there's a temporary unencrypted copy kept on the file system (removed 
when the 'viewing' operation is complete).

● Android Downloadable App: To store files offline, we require the user to enable device 
encryption and utilize the OS’s file encryption system. This allows the application to 
securely store local files.

● Mobile Browser App: The files cache is invalidated on client logout, navigation to a 
different site, or when closing the mobile browser.

Offline Sync
If Salesforce1 users lose their wireless connection, they can enable offline sync to navigate 
within the app, view most recent items, and create/edit records in draft form.

● iOS Downloadable App: Offline data is stored using Core Data, and encrypted 
using NSFileProtectionComplete. NSFileProtectionComplete dictates how passcodes 
are exposed internally to access the offline data. The passcode for the offline data 
is removed from the local keychain when Salesforce1 is closed or running in the 
background. Salesforce1 offline data is only accessible when the app is open and in the 
foreground. If an OS passcode isn’t set or if the device is unlocked, the encrypted offline 
data can be compromised by brute force attacks.

● Android Downloadable App: Offline data is stored in the Salesforce Mobile SDK 
SmartStore, which is a SQLCipher-encrypted SQLite database with AES-256 encrypted 
in CBC (cipher-block chaining) mode with appropriate IV (initialization vector) and PKCS 
#5 padding.

● Mobile Browser App: Offline sync functionality isn’t available in the mobile browser 
app.



Remote Wipe
To minimize the risk of information loss when a device is compromised, an org administrator 
can:

1. Disable a user completely (e.g. termination of an employee) to remove access and wipe 
the data from the application.

2. View the Connected Apps OAuth Usage report in the administration console to revoke 
the OAuth refresh token and associated access tokens. This wipes the application, 
which forces the user to re-authenticate (e.g. employee loses a phone).

Notes
● iOS: Prior to entering applicationDidEnterBackground, a benign splash screen is 

displayed to protect sensitive data from automatic iOS snapshotting (iOS uses automatic 
snapshotting for transition animations). The application prevents any snapshots of 
customer data during backgrounding.

● Security is not a binary (on/off), but implemented at different levels.
● Salesforce1 provides multiple levels of security; however, there’s no application that can 

guarantee a completely secure system.


